• Title/Summary/Keyword: direct cytotoxicity

Search Result 116, Processing Time 0.029 seconds

Induction of DNA Damage in L5178Y Cells Treated with Gold Nanoparticle

  • Kang, Jin-Seok;Yum, Young-Na;Kim, Joo-Hwan;Song, Hyun-A;Jeong, Jin-Young;Lim, Yong-Taik;Chung, Bong-Hyun;Park, Sue-Nie
    • Biomolecules & Therapeutics
    • /
    • v.17 no.1
    • /
    • pp.92-97
    • /
    • 2009
  • As nanomaterials might enter into cells and have high reactivity with intracellular structures, it is necessary to assay possible genotoxic risk of them. One of these approaches, we investigated possible genotoxic potential of gold nanoparticle (AuNP) using L5178Y cells. Four different sizes of AuNP (4, 15, 100 or 200 nm) were synthesized and the sizes and structures of AuNP were analyzed using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and stability was analyzed by a UV/Vis. Spectrophotometer. Cytotoxicity was assessed by direct cell counting, and cellular location was detected by dark field microscope at 6, 24 and 48 h after treatment of AuNP. Comet assay was conducted to examine DNA damage and tumor necrosis factor (TNF)-${\alpha}$ mRNA level was assay by real-time reverse transcription polymerase chain reaction. Synthetic AuNP (4, 50, 100 and 200 nm size) had constant characteristics and stability confirmed by TEM, SEM and spectrophotometer for 10 days, respectively. Dark field microscope revealed the location of AuNP in the cytoplasm at 6, 24 and 48 h. Treatment of 4 nm AuNP induced dose and time dependent cytotoxicity, while other sizes of AuNP did not. However, Comet assay represented that treatment of 100 nm and 200 nm AuNP significantly increased DNA damage compared to vehicle control (p <0.01). Treatment of 100 nm and 200 nm AuNP significantly increased TNF-${\alpha}$ mRNA expression compared to vehicle control (p<0.05, p<0.01, respectively). Taken together, AuNP induced DNA damage in L5178Y cell, associated with induction of oxidative stress.

Study on the Immunomodulatory Effects of Ellagic Acid and their Mechanisms Related to Toll-like Receptor 4 in Macrophages (Ellagic acid가 대식세포의 면역조절작용에 미치는 영향과 Toll-like receptor 4 관련 작용기전 연구)

  • NamKoong, Seung;Kim, Ye-Jin;Kim, Taeseong;Sohn, Eun-Hwa
    • Korean Journal of Plant Resources
    • /
    • v.25 no.5
    • /
    • pp.561-567
    • /
    • 2012
  • Ellagic acid (EA) is a phenolic compound in fruits and nuts including raspberries, strawberries, grapes and walnuts. Previous studies have indicated that EA possesses antioxidant activity, growth-inhibition and apoptosis-promoting activity in cancer cells. However, macrophage mediated cytotoxicity and immunomodulating effects on cancer cells have not been clarified. In the present study, we show that EA increased effects on macrophage mediated tumoricidal activity and NO production without direct tumor cell cytotoxicity. To further determine whether TLR4 (toll like receptor 4) is involved in anti-tumor activity, cells were treated TLR4 signaling inhibitor, CLI-095 in the presence of EA. CLI-095 treatment partially reduced macrophage-mediated tumoridial activity. EA also has inhibitory effects of NO production induced by LPS, whereas phagocytic activity was not changed. These results suggest that EA induces macrophage mediated tumoricidal activity which is partially related to TLR4 signaling and has a potential adjuvant in cancer therapy.

A Novel Anticoagulant Protein with High Affinity to Blood Coagulation Factor Va from Tegillarca granosa

  • Jung, Won-Kyo;Jo, Hee-Yeon;Qian, Zhong-Ji;Jeong, Young-Ju;Park, Sae-Gwang;Choi, Il-Whan;Kim, Se-Kwon
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.832-838
    • /
    • 2007
  • A novel inhibitory protein against blood coagulation factor Va (FVa) was purified from muscle protein of granulated ark (Tegillarca granosa, order Arcoida, marine bivalvia) by consecutive FPLC method using anion exchange and gel permeation chromatography. In the results of ESI-QTOF tandem mass analysis and database research, it was revealed that the purified T. granosa anticoagulant protein (TGAP) has 7.7 kDa of molecular mass and its partial sequence, HTHLQRAPHPNALGYHGK, has a high identity (64%) with serine/threonine kinase derived from Rhodopirellula baltica (order Planctomycetales, marine bacteria). TGAP could potently prolong thrombin time (TT), corresponding to inhibition of thrombin (FIIa) formation. Specific factor inhibitory assay showed that TGAP inhibits FVa among the major components of prothrombinase complex. In vitro assay for direct-binding affinity using surface plasmon resonance (SPR) spectrometer indicated that TGAP could be directly bound with FVa. In addition, the binding affinity of FVa to FII was decreased by addition of TGAP in dose-dependant manner ($IC_{50}$ value = 77.9 nM). These results illustrated that TGAP might interact with a heavy chain of FVa ($FVa_H$) bound to FII in prothrombin complex. The present study elucidated that non-cytotoxic T. granosa anticoagulant protein (TGAP) bound to FVa can prolong blood coagulation time by inhibiting conversion of FII to FIIa in blood coagulation cascade. In addition, TGAP did not significantly (P < 0.05) show fibrinolytic activity and cytotoxicity on venous endothelial cell line (ECV 304).

EFFECTS OF CHLORHEXIDINE AND L1STERINE ON CELL ACTIVITY OF HUMAN GINGIVAL FIBROBLAST IN VITRO (Chlorhexidine과 Listerine이 인체 치은 섬유모세포의 활성화에 미치는 영향)

  • Kang, Jung-Koo;Yoo, Hyung-Keun;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.25 no.1
    • /
    • pp.1-13
    • /
    • 1995
  • Chlorhexidine and Listerine are widely used in dentistry due to its effectiveness on plaque control and bactericidal action. The effects of these agent on chronic gingivitis and wound healing following surgical periodontal therapy in human has been favorable. Understanding the effects of chlorhexidine and Listerine on human gingival fibroblast will provide the rationale for its use during the healing process of periodontal surgery. The purpose of this study was to compare the effects of chlorhexidine and Listerine on human gingival fibroblast. Human gingival fibroblasts were cultured from the healthy gingiva on the extracted premolar of orthodontic patients. Human gingival fibroblast were trypsinized and cultured in growth medium added range of 0.0012-0.12% chlorhexidine and 1-100% Listerine mouth wash solution. The cell used in this study were between fifth to eighth passage number. The cell morphology were examined by inverted microscope and the cell activity were measured by MIT assay. The Morphology of gingival fibroblast added Chlorhexidine and Listerine at the concentration of all range were became globular and lost their cytoplasmic process. Our results indicate that a 0.0012 concentration of chlorhexidine and 1% concentration of Listerine were shows minimal cytotoxicity, but above these concentraion, there was a significant difference between the cell activity in the experimental group and control group(p

  • PDF

Inhibitory Effects of YP 12, A Newly Synthesized Obovatol Derivative on Rat Aortic Vascular Smooth Muscle Cell Proliferation

  • Lim, Yong;Lee, Mi-Yea;Jung, Jae-Kyung;Pyo, Myoung-Yun;Yun, Yeo-Pyo
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.3
    • /
    • pp.187-191
    • /
    • 2011
  • Platelet derived growth factor (PDGF)-BB is one of the most potent vascular smooth muscle cell(VSMC) proliferative factors, and abnormal VSMC proliferation by PDGF-BB plays an important role in the development and progression of atherosclerosis. The aim of this study was to assess the effect of YP 12, a newly synthesized obovatol derivative, on the proliferation of PDGF-BB-stimulated rat aortic VSMCs. The anti-proliferative effects of YP 12 on rat aortic VSMCs were examined by direct cell counting and by using $[^3H]$ thymidine incorporation assays. It was found that YP 12 potently inhibited the growth of VSMCs. The pre-incubation of YP 12 (1-4 ${\mu}M$) significantly inhibited the proliferation and DNA synthesis of 25 ng/ml PDGF-BB-stimulated rat aortic VSMCs in a concentration-dependent manner. In accordance with these findings, YP 12 revealed blocking of the PDGF-BB-inducible progression through G0/G1 to S phase of the cell cycle in synchronized cells. Whereas, YP 12 did not show any cytotoxicity in rat aortic VSMCs in this experimental condition by WST-1 assay. These results also show that YP 12 may have potential as an anti-proliferative agent for the treatment of restenosis and atherosclerosis.

Neurobiology of Alzheimer's Disease (알쯔하이머 질환의 신경생물학)

  • Chung, Young-Cho;Seo, Seung-Woo;Lee, Seung-Hwan
    • Korean Journal of Biological Psychiatry
    • /
    • v.8 no.1
    • /
    • pp.62-70
    • /
    • 2001
  • Alzheimer's disease(AD) is associated with a characteristic neuropathology. The major hallmarks of AD are senile plaques (SPs) and neurofibrillary tangles(NFTs). ${\beta}$-amyloid protein($A{\beta}$) is derived from the proteolysis of amyloid precursor protein(APP) and then converted to SPs. Mature SPs produce cytotoxicity through direct toxic effects and activation of microglia and complement. NFTs are composed of paired helical filaments(PHFs) including abnormally phosphorylated form of the microtubule-associated protein(MAP) tau and increased tau level in cerebrospinal fluid may be observed in most AD. The aggregation of $A{\beta}$ and tau formation are thought to be a final common pathway of AD. Acetylcholine, dopamine, serotonin, GABA and their receptors are associated with AD. Especially, decreased nicotinic acetylcholine receptors(nAChRs) in AD are reported. Genetic lesions associated with AD are mutations in the structural genes for the APP located on chromosome 21, presenilin(PSN)1 located on chromosome 14 and PSN2 located on chromosome 1. Also, trisomy 21, Apo-E gene located on chromosome 19, PMF locus, low density lipoprotein receptor-related protein and ${\alpha}$-macroglobulin increase risk of AD. In this article, we will review about the neurobiology of AD and some newly developed research areas.

  • PDF

Fasiglifam (TAK-875), a G Protein-Coupled Receptor 40 (GPR40) Agonist, May Induce Hepatotoxicity through Reactive Oxygen Species Generation in a GPR40-Dependent Manner

  • Kim, MinJeong;Gu, Gyo Jeong;Koh, Yun-Sook;Lee, Su-Hyun;Na, Yi Rang;Seok, Seung Hyeok;Lim, Kyung-Min
    • Biomolecules & Therapeutics
    • /
    • v.26 no.6
    • /
    • pp.599-607
    • /
    • 2018
  • Fasiglifam (TAK-875) a G-protein coupled receptor 40 (GPR40) agonist, significantly improves hyperglycemia without hypoglycemia and weight gain, the major side effects of conventional anti-diabetics. Unfortunately, during multi-center Phase 3 clinical trials, unexpected liver toxicity resulted in premature termination of its development. Here, we investigated whether TAK-875 directly inflicts toxicity on hepatocytes and explored its underlying mechanism of toxicity. TAK-875 decreased viability of 2D and 3D cultures of HepG2, a human hepatocarcinoma cell line, in concentration-(>$50{\mu}M$) and time-dependent manners, both of which corresponded with ROS generation. An antioxidant, N-acetylcysteine, attenuated TAK-875-mediated hepatotoxicity, which confirmed the role of ROS generation. Of note, knockdown of GPR40 using siRNA abolished the hepatotoxicity of TAK-875 and attenuated ROS generation. In contrast, TAK-875 induced no cytotoxicity in fibroblasts up to $500{\mu}M$. Supporting the hepatotoxic potential of TAK-875, exposure to TAK-875 resulted in increased mortality of zebrafish larvae at$25{\mu}M$. Histopathological examination of zebrafish exposed to TAK-875 revealed severe hepatotoxicity as manifested by degenerated hypertrophic hepatocytes with cytoplasmic vacuolation and acentric nuclei, confirming that TAK-875 may induce direct hepatotoxicity and that ROS generation may be involved in a GPR40-dependent manner.

Anti-oxidant Effect on Stevia rebaudiana (Stevia rebaudiana의 항산화 효과)

  • Jung, Eun Hye;Seo, Hye Lim;Kim, Min Gyu;Kim, Young Woo;Cho, Il Je
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.6
    • /
    • pp.764-770
    • /
    • 2013
  • Stevia rebaudiana is a traditional herb used as a sweetener in Brazil and Paraguay as well as Korea and China. This study investigated the efficacy of Stevia rebaudiana methanol extract (SRE) to protect cells against the mitochondrial dysfunction and apoptosis in hepatocyte. To determine the effects of SRE on oxidative stress, we used the human derived hepatocyte cell line, HepG2 cell. Treatment of arachidonic acid (AA)+iron in HepG2 cells synergistically amplified cytotoxicity, as indicated by the excess reactive oxygen species (ROS) and mitochondrial permeability transition by fluorescence activated cell sorter (FACS) and immunoblot analysis. Treatment with SRE protected hepatocytes from AA+iron-induced cellular toxicity, as shown by alterations in the protein levels related with cell viability such as procaspase-3. SRE also prevented the mitochondrial dysfunction induced by AA+iron, and showed anti-oxidant effects as inhibition of $H_2O_2$ production and GSH depletion. Moreover, we measured the effects of SRE on AMP-activated protein kinase (AMPK), a key regulator in determining cell survival or death. Acetyl-CoA Carboxylase (ACC), a direct downstream target of AMPK. SRE increased phosphorylation of ACC, and prevented the inhibition of ACC phosphorylation by AA+iron. These results indicated that SRE has the ability to protect cells against AA+iron-induced $H_2O_2$ production and mitochondrial impairment, which may be mediated with AMPK-ACC pathway.

A Novel Thrombolytic and Anticoagulant Serine Protease from Polychaeta, Diopatra sugokai

  • Kim, Hye Jin;Shim, Kyou Hee;Yeon, Seung Ju;Shin, Hwa Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.2
    • /
    • pp.275-283
    • /
    • 2018
  • Ischemic stroke can result from blockage of blood vessels, forming fibrin clots in the body and causing irreparable brain damage. Remedial thrombolytic agents or anticoagulants have been studied; however, because the FDA-approved tissue plasminogen activator has low efficacy and side effects, it is necessary to develop safer and more effective treatment candidates. This study aimed at assessing the fibrinolytic and anticoagulation features of a novel serine protease extracted and purified from Diopatra sugokai, a polychaeta that inhabits tidal flats. The purified serine protease was obtained through ammonium sulfate precipitation, affinity chromatography, and ion-exchange chromatography. Its molecular size was identified via SDS-PAGE. To characterize its enzymatic activities, the protease activity at various pH and temperatures, and in the presence of various inhibitors, was measured via azocasein assay. Its fibrinolytic activity and anticoagulant effect were assessed by fibrin zymography, fibrin plate assay, and fibrinogenolytic activity assays. The novel 38 kDa serine protease had strong indirect thrombolytic activity rather than direct activity over broad pH (4-10) and temperature ($37^{\circ}C-70^{\circ}C$) ranges. In addition, the novel serine protease exhibited anticoagulant activity by degrading the ${\alpha}$-, ${\beta}$-, and ${\gamma}$-chains of fibrinogen. In addition, it did not produce cytotoxicity in endothelial cells. Therefore, this newly isolated serine protease is worthy of further investigation as a novel alkaline serine protease for thrombolytic therapy against brain ischemia.

Inhibitory Effect of Ginseng on Breast Cancer Cell Line Growth Via Up-Regulation of Cyclin Dependent Kinase Inhibitor, p21 and p53

  • Shabanah, Othman A AL;Alotaibi, Moureq R;Rejaie, Salim S Al;Alhoshani, Ali R;Almutairi, Mashal M;Alshammari, Musaad A;Hafez, Mohamed M
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.11
    • /
    • pp.4965-4971
    • /
    • 2016
  • Objective: Breast cancer is global female health problem worldwide. Most of the currently used agents for breast cancer treatment have toxic side-effects. Ginseng root, an oriental medicine, has many health benefits and may exhibit direct anti-cancer properties. This study was performed to assess the effects of ginseng on breast cancer cell lines. Materials and Methods: Cytotoxicity of ginseng extract was measured by MTT assay after exposure of MDA-MB-231, MCF-10A and MCF-7 breast cancer cells to concentrations of 0.25, 0.5, 1, 1.5, 2 and 2.5 mg/well. Expression levels of p21WAF, p16INK4A, Bcl-2, Bax and P53 genes were analyzed by quantitative real time PCR. Results: The treatment resulted in inhibition of cell proliferation in a dose-and time-dependent manner. p53, p21WAF1and p16INK4A expression levels were up-regulated in ginseng treated MDA-MB-231 and MCF-7 cancer cells compared to untreated controls and in MCF-10A cells. The expression levels of Bcl2 in the MDA-MB-231 and MCF-7 cells were down-regulated. In contrast, that of Bax was significantly up-regulated. Conclusion: The results of this study revealed that ginseng may inhibit breast cancer cell growth by activation of the apoptotic pathway.