• Title/Summary/Keyword: dipole electric field

Search Result 95, Processing Time 0.034 seconds

Electrostatic field of the semi-infinite electric dipole layer as (a) dual analogy to the Ampere's law (b) capacitor's fringing field (반무한 전기 쌍극자층에 의한 정전계 해석과 앙페르 법칙에 자계와 커패시터의 누설 전계간의 이중성 유사 관계)

  • Cho, Young-Ki;Ahmad, Sheikh Faisal;Son, Hyeok-Woo;Kim, Hyun-Deok;Yoo, Hyoung-Suk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.606-611
    • /
    • 2012
  • The similarity, analogy and equivalence between the phenomenon due to electric and magnetic dipoles have been discussed in the open literature for different situations. Here we are presenting the numerical proof of the trajectory of leakage electric field due to a semi-infinite electric dipole layer in the external periphery and the electric field in the space between oppositely charged surfaces. The result is also valid for the fringing electric field of a parallel plate capacitor. The result is also proved to be a dual of Amp$\grave{e}$re's law in the electrostatics due to a semi-infinite electric dipole layer.

Near Fields around Metallic Walls due to a Nearby Dipole Source with Applications to EMC

  • Kim, Ki-Chai;Lim, Sung Min;Kim, Jong-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.329-334
    • /
    • 2017
  • This paper discusses the near field characteristics of a dipole source located near conducting metallic walls from an electromagnetic compatibility (EMC) point of view. An integral equation for a dipole source near a metallic wall is derived and solved by applying Galerkin's method of moments (MoM). The results show that in the regions outside the dipole source, total electric near fields decrease gradually in magnitude with an increasing field point from the dipole source. But in the regions inside the dipole source, total electric near fields decrease rapidly with a dipole position of $h{\leq}0.3{\lambda}$. For a dipole position of $h{\geq}0.7{\lambda}$, the peaks and nulls of the total near electric field occur periodically in the regions inside the dipole source, and the fluctuation period is almost $0.5{\lambda}$. The worst position for a receptor location is along the z-axis, and a range of a half-magnitude of the maximum near electric field in the principal H-plane is about two times broader than that of the principal E-plane. Experimental measurements are also presented to validate the theory.

Study on Prediction Method for ELF Transient Magnetic Field from Home Appliances (가전기기에서 발생되는 극저주파 과도자계 예측기법 연구)

  • Ju, Mun-No;Yang, Kwang-Ho;Myung, Sung-Ho;Min, Suk-Won
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.11
    • /
    • pp.616-621
    • /
    • 2002
  • With biological effects by ELF (Extremely Low Frequency) magnetic field generated from power system, the transient magnetic field from electric appliances is a major issue presently. Because the transient magnetic field induces higher current than the power frequency field inside living bodies, transient magnetic field exposure has been much focused. In this paper, it is shown that transient magnetic field from electric home appliances can be characterized as magnetic dipole moment. In this method, the dipole moment vector is assumed by allowing an uncertainty of 6dB in the estimated field. A parameter M that represents biological interaction was applied also. The proposed method was applied to 7 types of appliances (hair drier, heater, VDT, etc.) and their equivalent magnetic dipole moment and harmonic components were estimated. As the results, the useful data for quantifying magnetic field distribution around electric appliances were obtained.

An electric field induced on the same plane by a point dipole soruce within a conductor-backed lossy dielectric slab above the earth (지표면 위에 한쪽 면이 도체로 된 손실 유전체 슬랩 속의 다이폴 전원에 의한 동일면상의 전계)

  • 박동국;라정웅
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.12
    • /
    • pp.9-15
    • /
    • 1996
  • An electric field induced by a point dipole soruce within a conductor-backed lossy dielectric slab above the earth is calculated by anumerical method. the calcualtion is peformed on the plane which is parallel to the conductor plane and containing the point dipole soruce. Computed S$_{21}$ values of two parallel planar dipole antennas and two collinear planar dipole antennas are compared against each other, as well as the electic field magnitudes in those arrangements.

  • PDF

Effect of dipole electric field on low-voltage pentacene thin film transistors

  • Kim, Kang-Dae;Song, Chung-Kun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1636-1638
    • /
    • 2007
  • We report on low-voltage pentacene TFTs with a Al2O3/OTS as a gate dielectric. Improving device characteristics, we performed chemical modification of self-grown Al2O3 surface with an octadecyltrichlorosilane(OTS) self-assembled monolayer(SAM). As the result of this combination, the mobility was improved from 0.3 to $0.45\;cm^2/Vs$. In addition, we examined that the SAM dipole electric field have an influence on gate leakage current, transfer and output characteristics.

  • PDF

Design of Low Field RF Coil for Open MRI System by Electric Dipole Radiation

  • 김경락;양형진;오창현
    • Proceedings of the KSMRM Conference
    • /
    • 2001.11a
    • /
    • pp.174-174
    • /
    • 2001
  • Purpose: Dimensions of body RF coil composed of 4 rectangular loops for low field open MRI hav been optimized. The design result shows the field inhomogeneity of B1 field below 1.5 dB in the 25 cm DSV can be achieved. Method: Our low field RF coil is composed of 4 rectangular strip loops that assumed to b located at both the bottom and top sides of permanent magnet. All the loops have identica dimensions and current amplitude. First, the inductance of a loop is calculated. Second, the current distribution on the coil strip is calculated by using finite difference time doma method (FDTD). It takes as much as 4 days in FDTD simulation for low frequency RF field That's why the electrical dipole radiation method is used for simulation. With the curren distribution obtained using the FDTD simulation, for various dimensional parameters th magnetic field has been calculated by electric dipole radiation method, where the curren elements are regarded as electric dipole radiation sources. The field pattern from electri dipole radiation is almost same as that from FDTD simulation. Also, it is same as that fro the result using the Viot-Savart equation, for far tone radiation term becomes zero and th Bl field amplitude of near one radiation is the same as the B field due to static current The field homogeneity is calculated in the 25 cm BSV.

  • PDF

Analysis on Harmonics Characteristics of ELF Magnetic Fields Generated by Electric Appliances (가전기기 발생 극저주파 자계 고조파 특성 해석)

  • Min Suk-Won;Song Ki-Hyun;Yang Kwang-Ho;Ju Mun-No
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.1
    • /
    • pp.31-37
    • /
    • 2005
  • With biological effects by ELF(Extremely Low Frequency) magnetic field generated from power system, the transient magnetic field from electric appliances is a major issue presently. In this paper, we measured magnetic field distributions around electric appliances in view of harmonics and analyzed them by the use of an equivalent magnetic dipole moment method. This method was applied to 19 types of appliances, and their equivalent magnetic dipole moments and harmonic components were determined. The results show that this method is applicable to many appliances and the higher frequency magnetic field may induce higher current inside living bodies.

Design and Fabrication of an Electric-Field Probe Using Short Dipole Antennas (소형 이극안테나를 이용한 전계강도 프로브의 설계 및 제작)

  • 김혁제;박동철;이애경;심환우
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.6 no.1
    • /
    • pp.3-9
    • /
    • 1995
  • An isotropic electric-field probe, capable of characterizing and quantifying electromagnetic field, was fabricated. The probe consists of three short dipole antennas, a beam-lead Schottky diode and the high resistive transmission line. In order to get the isotropic response three mutually orthogonal dipoles are configured to form the probe. The probe's short dipole elements allow measurements of electric fields from 300MHz to 2GHz with a flatness of .+-. 2.9dB. The mutually orthogonal dipole configration shows a .+-. 1.2dB deviation in the isotropic response with respect to angle.

  • PDF

Design of Body RF Coil with Multiple Strips for Open MRI System by Pseudo Electric Dipole Radiation

  • 김경락;류승학;류연철;양형진;오창현
    • Proceedings of the KSMRM Conference
    • /
    • 2002.11a
    • /
    • pp.76-76
    • /
    • 2002
  • Purpose: The purpose of this study is to optimize the configuration of body RF coil composed of 4 planar subcoils for low field open MRI. Method: Our low field RE coil is composed of 4 subcoils assumed to be located at both the bottom and top sides of permanent magnet. Each subcoils has 3 main strips. The coil system has mirror inversion symmetry. First, the currents on the strips are obtained by inductance calculation and circuit analysis, Second, all the strips are divided into line strip elements across the strips, the self Inductances of line strip elements and the mutual inductances among the line strip elements are calculated, and current distributions of strip are obtained by circuit analysis, where each strip is considered as parallel combination of line strip elements. Finally all the line strip elements are segmented, magnetic field has been calculated by pseudo electric dipole radiation method, where the current elements are regarded as pseudo electric dipole radiation sources. We have performed above procedures for various configurations of RE coil. The field homogeneity is calculated in the 25 cm DSV.

  • PDF

A Study on Prediction Technique for Underwater Electric Field Signature Characteristic using Dipole Modelling Method (다이폴 모델링 기법을 이용한 수중 전기장 신호 특성 예측 기법 연구)

  • Yang, Chang-Seob;Chung, Hyun-Ju;Lee, Jong-Ju;Jeon, Jae-Jin
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.6
    • /
    • pp.221-224
    • /
    • 2008
  • This paper describes the equivalent dipole modeling method utilizing a singular value decomposition technique from analysis data by the FNREMUS Detailled Modeller software based on BEM which can predict the underwater electric field signal due to a galvanic corrosion phenomenon on a naval vessel. The proposed dipole modeling method was successfully verified in good agreement with predicted BEM data at 30 m depths through the comparison of average differences. The proposed dipole modelling method can be effectively used in the prediction and analysis of static electric field signature distributions generated from a naval vessel at any different depths.