• Title/Summary/Keyword: diode structure

Search Result 621, Processing Time 0.023 seconds

Improvement of Out-coupling Efficiency of Organic Light Emitting Device by Ion-beam Plasma-treated Plastic Substrate (이온빔 플라즈마 처리된 플라스틱 기판에 의한 OLED의 광추출 효율 향상)

  • Kim, Hyeun Woo;Song, Tae Min;Lee, Hyeong Jun;Jeon, Yongmin;Kwon, Jeong Hyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.7-10
    • /
    • 2022
  • A functional polyethylene terephthalate substrate to increase light extraction efficiency of organic light-emitting diodes is studied. We formed nano-structured PET surfaces by controlling the power, gas, and exposure time of the linear ion-beam. The haze of the polyethylene terephthalate can be controlled from 0.2% to 76.0% by changing the peak-to-valley roughness of nano structure by adjusting the exposure cycle. The treated polyethylene terephthalate shows average haze of 76.0%, average total transmittance of 86.6%. The functional PET increases the current efficiency of organic light-emitting diodes by 47% compared to that of organic light-emitting diode on bare polyethylene terephthalate. In addition to polyethylene terephthalate with light extraction performance, by conducting additional research on the development of functional PET with anti-reflection and barrier performance, it will be possible to develop flexible substrates suitable for organic light-emitting diodes lighting and transparent flexible displays.

Study on Quantum Dot Components and Their Use in High Color Rendering Lighting (양자점 부품과 이를 활용한 고연색성 조명 연구)

  • Jae-Hyeon Ko
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.3
    • /
    • pp.95-106
    • /
    • 2024
  • In the 21st century, white light-emitting diodes (LEDs) are widely used as backlighting for liquid crystal displays and as a light source for general illumination. However, white LEDs used in lighting often use a single yellow phosphor on top of a blue LED chip, which lacks the ability to reproduce natural colors in objects under conventional illumination accurately. Recently, researchers have been actively working on realizing high color-rendering lighting by incorporating red quantum dots to improve the spectrum in the long-wavelength band, which is deficient in conventional white LEDs. In particular, how to develop and apply remote quantum dot components to ensure long-term reliability is currently under active research. This paper introduces recent research on remote quantum dot components and the current status of developing high color-rendering lightings with them. Especially, we focus on various factors that are important to consider in optimizing the optical structure of the quantum dot components and discuss the future directions and prospects of research for high color-rendering lighting technology.

Dependency of the emission efficiency on doping profile of the red phosphorescent organic light-emitting diodes

  • Park, Won-Hyeok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.224-224
    • /
    • 2016
  • Many researchers have been tried to improve the performance of the phosphorescent organic light-emitting diode(PHOLED) by controlling of the dopant profile in the emission layer. In this work, as shown in Fig. 1 insert, a typical red PHOLED device which has the structure of ITO/NPB(50nm)/CBP(30nm)/TPBi(10nm)/Alq3(20nm)/LiF(0.8nm)/Al(100nm) is fabricated with a 5nm thick doping section in the emission layer. The doping section is formed by co-deposition of CBP and Ir(btp)2acac with a doping concentration of 8%, and it's location(x) is changed from HTL/EML interface to EML/HBL in 5nm steps. The current efficiency versus current density of the devices are shown in Fig. 1. By changing the location of doping section, as shown in Fig. 1 and 2, at x=5nm, the efficiency shows the maximum of 3.1 cd/A at 0.5 mA/cm2 and it is slightly decreased when the section is closed to HTL and slightly increased when the section is closed to HBL. If the doping section is closed to HTL(NPB) the excitons can be quenched easily to NPB's triplet state energy level(2.5eV) which is relatively lower than that of CBP(2.6eV). Because there is a hole accumulation at EML/HBL interface the efficiency can be increased slightly when the section is closed to HBL. Even the thickness of the doping section is only 5nm,. the maximum efficiency of 3.1 cd/A with x=5 is closed to that of the homogeneously doped device, 3.3 cd/A, because the diffusion length of the excitons is relatively long. As a result, we confirm that the current efficiency of the PHOLED can be improved by the doping profile optimization such as partially, not homogeneously, doped EML structure.

  • PDF

ASSESSING CALIBRATION ROBUSTNESS FOR INTACT FRUIT

  • Guthrie, John A.;Walsh, Kerry B.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1154-1154
    • /
    • 2001
  • Near infra-red (NIR) spectroscopy has been used for the non-invasive assessment of intact fruit for eating quality attributes such as total soluble solids (TSS) content. However, little information is available in the literature with respect to the robustness of such calibration models validated against independent populations (however, see Peiris et al. 1998 and Guthrie et al. 1998). Many studies report ‘prediction’ statistics in which the calibration and prediction sets are subsets of the same population (e. g. a three year calibration validated against a set from the same population, Peiris et al. 1998; calibration and validation subsets of the same initial population, Guthrie and Walsh 1997 and McGlone and Kawano 1998). In this study, a calibration was developed across 84 melon fruit (R$^2$= 0.86$^{\circ}$Brix, SECV = 0.38$^{\circ}$Brix), which predicted well on fruit excluded from the calibration set but taken from the same population (n = 24, SEP = 0.38$^{\circ}$Brix with 0.1$^{\circ}$Brix bias), relative to an independent group (same variety and farm but different harvest date) (n = 24, SEP= 0.66$^{\circ}$ Brix with 0.1$^{\circ}$Brix bias). Prediction on a different variety, different growing district and time was worse (n = 24, SEP = 1.2$^{\circ}$Brix with 0.9$^{\circ}$Brix bias). Using an ‘in-line’ unit based on a silicon diode array spectrometer, as described in Walsh et al. (2000), we collected spectra from fruit populations covering different varieties, growing districts and time. The calibration procedure was optimized in terms of spectral window, derivative function and scatter correction. Performance of a calibration across new populations of fruit (different varieties, growing districts and harvest date) is reported. Various calibration sample selection techniques (primarily based on Mahalanobis distances), were trialled to structure the calibration population to improve robustness of prediction on independent sets. Optimization of calibration population structure (using the ISI protocols of neighbourhood and global distances) resulted in the elimination of over 50% of the initial data set. The use of the ISI Local Calibration routine was also investigated.

  • PDF

A Study on the Improvement of Performance in VCO Using In/Out Common Frequency Tuning (입출력 공동 주파수 동조를 통한 VCO의 성능 개선에 관한 연구)

  • Suh, Kyoung-Whoan;Jang, Jeong-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.5
    • /
    • pp.468-474
    • /
    • 2010
  • In this paper, a VCHO(Voltage Controlled Harmonic Oscillator) for K-band application has been designed and implemented. The proposed oscillator has a structure of two hair-pin resonators placed on input and output of active device. Using in/out common frequency tuning structure, the VCHO yields some advantages of the enhanced fundamental frequency suppression characteristic as well as the improved output power of second harmonic. According to implementation and measurement results, it was shown that a VCHO provides an output power of -2.41 dBm, a fundamental frequency suppression of -21.84 dBc, and phase noise of -101.44 dBc/Hz at 100 kHz offset. In addition, as for the bias voltage from 0 V to -10 V for the varactor diode, output frequency range of 10.58 MHz is obtained with a power variation of ${\pm}0.19\;dB$ over its frequency range.

A Study On Properties and Phase Change Characteristics of (GeTe)x(Sb2Te3) (x=0.5, 1, 2, 8) Thin Films for PRAM (PRAM을 위한 (GeTe)x(Sb2Te3) (x=0.5, 1, 2, 8) 박막의 물성 및 상변환 특성 연구)

  • Kim, Sung-Won;Song, Ki-Ho;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.7
    • /
    • pp.585-593
    • /
    • 2008
  • In this work, we report several experimental data capable of evaluating the phase transformation characteristics of GeSbTe pseudobinary thin films comprehensively utilized as phase change materials. The phase transformation of the GeSbTe thin films was confirmed by XRD measurement from amorphous to hexagonal structure via fee structure except for $Ge_8Sb_2Te_{11}$. In addition, X-ray photoelectron spectra analysis revealed to weaken Ge-Te bond for $Ge_2Sb_2Te_5$ and to strengthen the bonds of all elements for $Ge_8Sb_2Te_{11}$ during the amorphous to crystalline transition. The values of optical energy gap $(E_{OP})$ were around 0.71 and 0.50 eV and the slopes of absorption in extended region (B) were ${\sim}5.1{\times}10^5$ and ${\sim}10{\times}10^5cm^{-1}{\cdot}V^{-1}$ for the amorphous and fcc-crystalline structures, respectively. Finally, the kinetics of amorphous-to-crystalline phase change on the GeSbTe films was characterized using a nano-pulse scanner with 658-nm laser diode (power; $1{\sim}17$ mW, pulse duration; $10{\sim}460$ ns).

Luminous Characteristics of Bridge's Nightscape across the Han River (조명물리량 측면에서 본 교량의 야간경관 평가)

  • Hwang, Tae-Yon;Kim, Jeong-Tai
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.1
    • /
    • pp.7-18
    • /
    • 2006
  • This study aims to analyze the illumination effects of bridges across the Han River. For the purpose, 8 bridges were selected. Field survey and measurements were performed, and the physical values such as luminance, color temperature and chromaticity were measured by Radiant Imaging Prometric 1400 Color. The results of the study are as follows; (1) Metal halide lamp, sodium lamp and LED(Light Emitting Diode) of various colors, are used in illuminating the bridges and create color contrasts and color changing by color filters. (2) Luminance contrast of the illuminated bridges affects 'modeling' and 'spare sense' of bridges, and it might improve people's preference and impression. (3) Color temperature of the illuminated bridges is influenced by 'color of bridge', 'material of bridge' and, 'color temperature and color of light sources'. (4) 'Structure of bridges' and 'luminaires' influence on the physical feature of the bridges. Especially, illumination of the bridges shows resemblant patterns by 'structure of bridges'.

A Study on the Electrical Characteristic Analysis of c-Si Solar Cell Diodes

  • Choi, Pyung-Ho;Kim, Hyo-Jung;Baek, Do-Hyun;Choi, Byoung-Deog
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.1
    • /
    • pp.59-65
    • /
    • 2012
  • A study on the electrical characteristic analysis of solar cell diodes under experimental conditions of varying temperature and frequency has been conducted. From the current-voltage (I-V) measurements, at the room temperature, we obtained the ideality factor (n) for Space Charge Region (SCR) and Quasi-Neutral Region (QNR) of 3.02 and 1.76, respectively. Characteristics showed that the value of n (at SCR) decreases with rising temperature and n (at QNR) increases with the same conditions. These are due to not only the sharply increased SCR current flow but the activated carrier recombination in the bulk region caused by defects such as contamination, dangling bonds. In addition, from the I-V measurements implemented to confirm the junction uniformity of cells, the average current dispersion was 40.87% and 10.59% at the region of SCR and QNR, respectively. These phenomena were caused by the pyramidal textured junction structure formed to improve the light absorption on the device's front surface, and these affect to the total diode current flow. These defect and textured junction structure will be causes that solar cell diodes have non-ideal electrical characteristics compared with general p-n junction diodes. Also, through the capacitance-voltage (C-V) measurements under the frequency of 180 kHz, we confirmed that the value of built-in potential is 0.63 V.

Effects of Substituting B2O3 for P2O5 on the Structure and Properties of SnO-P2O5 Glass Systems (SnO-P2O5계 유리에서 P2O5를 B2O3로 치환시 구조와 물성에 미치는 영향)

  • Kim, Dong-Hwan;Hwang, Cha-Won;Kim, Nam-Jin;Im, Sang-Hyeok;Gwoo, Dong-Gun;Kim, Tae-Hee;Cha, Jae-Min;Ryu, Bong-Ki
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.1
    • /
    • pp.63-68
    • /
    • 2011
  • The investigation is directed to lead free (Pb-free) frits that can be used for organic light emitting diode, plasma display screen devices and other sealing materials. $P_2O_5$-SnO system glasses have been prepared for Pb-free low temperature glass frit. Structure and properties of the glasses with the composition SnO-$xB_2O_3-(60-x)P_2O_5$ (x=0, 5, 10, 15, 20, 25, 30, 35, 40 mol%) were characterized by infrared spectra (IR), X-ray diffraction(XRD), Density, Molar volume, Thermo mechanical analysis(TMA) and weight loss after immersion test. Glass transition temperature($T_g$), dilatometric softening temperature($T_d$) and chemical durability increased, and coefficient of thermal expansion($\alpha$) decrease with the substitution of $B_2O_3$ for $P_2O_5$ in the range of 0~25 mol%.

Study of the Nitrogen-Beam Irradiation Effects on ALD-ZnO Films (ALD로 성장된 ZnO박막에 대한 질소이온 조사효과)

  • Kim, H.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.5
    • /
    • pp.384-389
    • /
    • 2009
  • ZnO, a wurtzite lattice structure, has attracted much attention as a promising material for light-emitting diodes (LEDs) due to highly efficient UV emission resulting from its large band gap of 3.37 eV, large exciton binding energy of 60 meV, and low power threshold for optical pumping at room temperature. For the realization of LEDs, both n-type ZnO and p-type ZnO are required. Now, n-type ZnO for practical applications is available; however, p-type ZnO still has many drawbacks. In this study, ZnO films were grown on glass substrates by using atomic layer deposition (ALD) and the ZnO films were irradiated by nitrogen ion beams (20 keV, $10^{13}{\sim}10^{15}ions/cm^2$). The effects of nitrogen-beam irradiation on the ZnO structure as well as the electrical property were investigated by using fieldemission scanning electron microscopy (FESEM) and Hall-effect measurement.