• 제목/요약/키워드: dimensional splitting

검색결과 162건 처리시간 0.021초

난류 유동장에 대한 CFDS 기법의 수치적 연구 (Numerical study of CEDS scheme for turbulent flow)

  • 문성목;김종암;노오현;홍승규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.23-26
    • /
    • 2002
  • An evaluation of one algebraic and two one-equation eddy viscosity-transport turbulence closure models as implemented to the CFDS(Characteristic Flux Difference Splitting) scheme is presented for the efficient computation of the turbulent flow. Comparisons of Baldwin-Lomax model as algebraic turbulence model and Baldwin-Barth and Spalart-Allmaras model as one-equation turbulence model are presented for three test cases for 3-dimensional flow. The numerical result of the CFDS schem is examined through comparison with the experimental data.

  • PDF

Duality of Photonic Crystal Radiative Structures and Antenna Arrays

  • Bozorgi, Mahdieh;Granpayeh, Nosrat
    • Journal of the Optical Society of Korea
    • /
    • 제14권4호
    • /
    • pp.438-443
    • /
    • 2010
  • In this paper, behaviors of photonic crystal (PC) radiative structures and antenna arrays have been compared for two types of uniform and binomial excitations. Appropriate duality has been shown between them. These results can be generalized to other types of excitation and arrangement of photonic crystal radiative arrays such as linear, planar and circular arrays of three dimensional (3D) photonic crystal termination resonators. Using these results in designing photonic circuits has some advantages for shaping a particular radiative beam at the photonic crystal exit, for instance reducing the divergence angle of the main lobe in order to enhance the directivity, for better coupling, or for splitting the emitted beam, for dividing the output beam to the next devices in photonic integrated circuits (PIC). For analysis and simulation of the photonic crystal structures, the finite difference time domain (FDTD) method has been employed.

FVS를 이용한 터널을 통과하는 초음속 실린더 주위의 충격파 거동 해석 (The Behavior of Shock Wave through a Circular Tunnel around Supersonic Cylinder using FVS Upwind Scheme)

  • 고민호;신창훈;박원규
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1999년도 추계 학술대회논문집
    • /
    • pp.29-35
    • /
    • 1999
  • A two-dimensional Euler code based on flux vector splitting scheme has been developed to simulate the behavior of supersonic shock wave over the cylinder. AF+ADI scheme was used for time integration. The sliding multiblock technique was implemented to handle the relative motion of the moving cylinder and the stationary tunnel. The code is validated with a problem of subsonic flow around a Naca-0012 airfoil. The Computation results show complex phenomena of the propagation of shock waves and the reflection as expansion wave at tunnel exit.

  • PDF

다양한 근사인수분해 알고리즘을 이용하여 압축성 유동장의 수렴성 및 유용성에 대한 연구 (A Numerical Study on Efficiency and Convergence for Various Implicit Approximate Factorization Algorithms in Compressible Flow Field.)

  • 권창오;송동주
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1999년도 추계 학술대회논문집
    • /
    • pp.17-22
    • /
    • 1999
  • Convergence characteristics and efficiency of three implicit approximate factorization schemes(ADI, DDADI and MAF) are examined using 2-Dimensional compressible upwind Navier-Stokes code. Second-order CSCM(Conservative Supra Characteristic Method) upwind flux difference splitting method with Fromm scheme is used for the right-hand side residual evaluation, while generally first-order upwind differencing is used for the implicit operator on the left-hand side. Convergence studies are performed using an example of the flow past a NACA0012 airfoil at steady transonic flow condition, i. e. Mach number 0.8 at $1.25^{\circ}$ angle of attack. The results were compared with other computational results in order to validate the current numerical analysis. The results from the implicit AF algorithms were compared well in low surface with the other computational results; however, not well in upper surface. It might be due to lack of the grid around the shock position. Because the algorithm minimizes the errors of the approximate decomposition, the improved convergence rate with MAF were observed.

  • PDF

비정렬 혼합 격자에서 내재적 방법을 이용한 비압축성 유동해석 (Implicit Incompressible flow solver on Unstructured Hybrid grids)

  • 김종태;김용모;맹주성
    • 한국전산유체공학회지
    • /
    • 제3권2호
    • /
    • pp.17-26
    • /
    • 1998
  • The three-dimensional incompressible Navier-Stokes equations have been solved by a node-centered finite volume method with unstructured hybrid grids. The pressure-velocity coupling is handled by the artificial compressibility algorithm and convective fluxes are obtained by Roe's flux difference splitting scheme with linear reconstruction of the solutions. Euler implicit method with Jacobi matrix solver is used for the time-integration. The viscous terms are discretised in a manner to handle any kind of grids such as tetragedra, prisms, pyramids, hexahedra, or mixed-element grid. Inviscid bump flow is solved to check the accuracy of high order convective flux discretisation. And viscous flows around a circular cylinder and a sphere are studied to show the efficiency and accuracy of the solver.

  • PDF

한국형 기동헬기 블레이드의 제자리 비행 공력 해석 (Aerodynamic Calculations in Hover of KUH Rotor Blade)

  • 강희정;김승호;정문승;이희동;권오준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.25-28
    • /
    • 2008
  • An aerodynamic calculation in hover of KUH main rotor blade is performed using a three-dimensional unstructured hybrid mesh viscous flow solver. The flow solver utilizes a vertex-centered finite-volume scheme that is based on the Roe's flux-difference splitting with an implicit Jacobi/Gauss-Seidel time integration. The eddy viscosity are estimated by the Spalart-Allmaras one-equation turbulence model. A solution-adaptive mesh refinement technique is used for efficient capturing of the tip vortex. Calculations are performed at several operating conditions with varying collective pitch setting for KUH main rotor blade in hover. Good agreements are obtained between the present and other results using HOST and CAMRAD II in overall rotor performance. It is demonstrated that the present vertex-centered flow solver is an efficient and accurate tool for the assessment of rotor performance in hover.

  • PDF

Development of an Automatic Two-Dimensional Mesh Generator using an Inward Offset Boundary Technique

  • Choi, Jin-Woo;Kim, Yohng-Jo
    • 한국기계가공학회지
    • /
    • 제2권4호
    • /
    • pp.61-66
    • /
    • 2003
  • An excellent mesh construction is of Importance in yielding good results of finite element analysis. The new mesh generation algorithm, which offsets boundaries inward, was developed on the basis of a looping method. An user interface technique and automatic splitting lines which both divide a given domain into subdomains manually or automatically, were used. In addition, the separation method has advantages to prevent the large scale of element size and to control numbers of nodes and elements. This new mesh generation algorithm was proved in practice.

  • PDF

Femtosecond Micromachining Applications for Optical Devices

  • Sohn, Ik-Bu;Lee, Man-Seop;Woo, Jeong-Sik
    • Journal of the Optical Society of Korea
    • /
    • 제8권3호
    • /
    • pp.127-131
    • /
    • 2004
  • This paper investigates applications of femtosecond lasers for the micromachining of transparent materials and fabrication of optical devices. We show commercial micromachining examples of transparent materials which have been fabricated for various applications. Near infrared femtosecond laser processing is an attractive method to fabricate three-dimensional optical waveguides into various transparent materials. Focused femtosecond laser pulses induce a permanent refractive-index change only near the focal point. We also demonstrate a Y coupler with the splitting ratio of 1:1 written by femtosecond laser pulses into a fused silica glass. The minimum propagation loss of 0.8 ㏈/㎝ awl the refractive-index change of 0.006-0.01 at the wavelength of 1550 ㎚ were achieved by optimization of the laser fluence.

Nano-structuring of Transparent Materials by Femtosecond Laser Pulses

  • Sohn, Ik-Bu;Lee, Man-Seop;Chung, Jung-Yong;Cho, Sung-Hak
    • Journal of the Optical Society of Korea
    • /
    • 제9권1호
    • /
    • pp.1-5
    • /
    • 2005
  • Using tightly focused femtosecond laser pulses, we produce an optical waveguide and optical devices in transparent materials. This technique has the potential to generate not only channel waveguides, but also three-dimensional optical devices. In this paper, an optical splitter and U-grooves, which are used for fiber alignment, are simultaneously fabricated in a fused silica glass using near-IR femtosecond laser pulses. The fiber aligned optical splitter has a low insertion loss, less than 4㏈, including an intrinsic splitting loss of 3㏈ and excess loss due to the passive alignment of a single-mode fiber. Finally, we demonstrate the utility of the femtosecond laser writing technique by fabricating gratings at the surface and inside the silica glass.

A New Video Coding Algorithm using 3D-Subband Coding and Lattice Vector Quantization

  • Park, Joong-Han;Lee, Keun-Young
    • Journal of Electrical Engineering and information Science
    • /
    • 제2권6호
    • /
    • pp.131-137
    • /
    • 1997
  • In this paper, we propose an efficient motion adaptive 3-dimensional (3D) video coding algorithm using 3D subband coding (3D-SBC) and lattice vector quantization (LVQ) for low bit rate. Instead of splitting input video sequences into the fixed number of subbands along the temporal axes, we decompose them into temporal subbands of variable size according to motions in frames. Each spatio-temporally splitted 7 subbands are partitioned by quadtree technique and coded with lattice vector quantization(LVQ). The simulation results show 0.1∼4.3dB gain over H.261 in peak signal to noise ratio (PSNR) at low bit rate(64Kbps).

  • PDF