• Title/Summary/Keyword: dimensional deviation

Search Result 370, Processing Time 0.028 seconds

Three-dimensional Assessment of Facial Soft Tissue after Orthognathic Surgery in Patients with Skeletal Class III and Asymmetry

  • Lee, Jong-Hyeon;Choi, Dong-Soon;Cha, Bong-Kuen;Park, Young-Wook;Jang, Insan
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.35 no.6
    • /
    • pp.360-367
    • /
    • 2013
  • Purpose: The purpose of this study was to perform three-dimensional (3D) assessment of facial soft tissue in patients with skeletal Class III and mandibular asymmetry after orthognathic surgery. Methods: Samples consisted of 3D facial images obtained from five patients with A point-nasion-B point angle less than 2 degrees, and more than 5 mm of menton deviation. All patients had been treated at Gangneung-Wonju National University Dental Hospital from 2009 to 2012. They had undergone orthognathic surgery of Lefort I, and sagittal split osteotomy for correction of skeletal deformity, and orthodontic treatment. Facial scanning was performed before treatment (T1) and post-surgical orthodontic treatment (T2). Linear and angle variables of soft tissue landmarks, antero-posterior facial depth, and facial volume were measured. Results: No significant differences in width of the alar base, mouth width, and nasal canting were observed between T1 and T2. However, lip deviation, menton deviation, alar canting, lip canting, and menton deviation angle were significantly reduced at T2. Antero-posterior facial depth on the axial plane parallel to the left cheilion was significantly reduced on the deviated side and significantly increased on the non-deviated side at T2. Volume of the lower lateral and lower medial parts of the face was reduced on the deviated side, and volume of upper lateral and lower lateral parts on the non-deviated side was significantly increased at T2. Conclusion: After orthognathic surgery, facial asymmetry of soft tissue was improved following skeletal changes, especially the mandibular region. Although the length of the alar base and mouth width did not change, lip and soft tissue menton were displaced to the medial side after treatment. Facial depth also became symmetric after treatment. Facial volume showed a decrease on the lower part of the deviated side and that on lateral parts of the non-deviated side showed an increase after treatment.

Relationship between chin deviation and the position and morphology of the mandible in individuals with a unilateral cleft lip and palate

  • Kim, Kyung-Seon;Son, Woo-Sung;Park, Soo-Byung;Kim, Seong-Sik;Kim, Yong-Il
    • The korean journal of orthodontics
    • /
    • v.43 no.4
    • /
    • pp.168-177
    • /
    • 2013
  • Objective: In this study, we aimed to examine the relationship between chin deviation and the positional and morphological features of the mandible and to determine the factors that contributed to chin deviation in individuals with a unilateral cleft lip and palate (UCLP). Methods: Cone-beam computed tomography (CBCT) images of 28 adults with UCLP were analyzed in this study. Segmented three-dimensional temporomandibular fossa and mandible images were reconstructed, and angular, linear, and volumetric parameters were measured. Results: For all 28 individuals, the chin was found to deviate to the cleft side by 1.59 mm. Moreover, among these 28 individuals, only 7 showed distinct (more than 4 mm) chin deviation, which was toward the cleft side. Compared to the non-cleft side, the mandibular body length, frontal ramal inclination, and vertical position of the condyle were lower and inclination of the temporomandibular fossa was steeper on the cleft side. Furthermore, the differences in inclination of the temporomandibular fossa, mandibular body length, ramus length, and condylar volume ratio (non-deviated/deviated) were positively correlated with chin deviation. Conclusions: UCLP individuals show mild chin deviation to the cleft side. Statistical differences were noted in the parameters that represented positional and morphological asymmetries of the mandible and temporomandibular fossa; however, these differences were too small to indicate clinical significance.

Investigation of Thermal Characteristics and Skeleton Size Effects to improve Dimensional Accuracy of Variable Lamination Manufacturing by using EPS Foam (발포 폴리스티렌 폼을 이용한 가변적층 쾌속조형공정의 형상 정밀도 개선을 위한 열전달 특성 및 잔여 재료폭 영향에 관한 연구)

  • 안동규;이상호;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.910-913
    • /
    • 2001
  • Rapid Prototyping(RP) techniques have unique characteristics according to their working principle: the stair-stepped surface of a part due to layer-by-layer stacking, low building speed, and additional post-processing to improve surface roughness. A new RP process, Variable Lamination Manufacturing by using expandable polystyrene foam(VLM-S), has been developed to overcome the unfavorable characteristics. The objective of this study is to investigate the thermal characteristics and skeleton size effects as the hotwire cuts EPS foam sheet in order to improve dimensional accuracy of the parts, which is produced by VLM-S. Empirical and analytical approaches are performed to find the relationship between cutting speed and heat input, and the relationship between maximum available cutting speed and heat input. In addition, empirical approaches are carried out to find the relationship between cutting error and skeleton size, and cutting deviation and skeleton size. Based on these results, the optimal hotwire cutting condition and available minimum skeleton size are derived. The outcomes of this study are reflecting in the enhancement of VLM-S input data generation S/W.

  • PDF

Tethered DNA shear dynamics in the flow gradient plane: application to double tethering

  • Lueth, Christopher A.;Shaqfeh, Eric S.G.
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.3
    • /
    • pp.141-146
    • /
    • 2007
  • We examine the wall contact of a $3\;{\mu}m$ tethered DNA chain's free end under shear with a focus on developing schemes for double-tethering in the application of making scaffolds for molecular wires. At this scale our results are found to be highly dependent on small length scale rigidity. Chain-end-wall contact frequency, mean fractional extension deficit upon contact, and standard deviation in extension upon contact are examined for scaling with dimensionless flow strength, Wi. Predictions made using a one dimensional approximation to the Smoluchowski equation for a dumbbell and three dimensional dumbbell simulations produce extension deficit, standard deviation, and frequency scaling exponents of -1/3, -1/3, and 2/3, respectively whereas more fine-grained Kratky-Porod (KP) simulations produce scaling exponents of -0.48, -0.42, and 0.76. The contact frequency scaling of 2/3 is derived from the known results regarding cyclic dynamics Analytical scaling predictions are in agreement with those previously proposed for ${\lambda}-DNA$. [Ladoux and Doyle, 2000, Doyle et al., 2000]. Our results suggest that the differences between the dumbbell and the KP model are associated with the addition of chain discretization and the correct bending potential in the latter. These scaling results will aide future exploration in double tethering of DNA to a surface.

Parameter dependent conduction path for nano structure double gate MOSFET (나노구조 이중게이트 MOSFET에서 전도중심의 파라미터 의존성)

  • Jeong Hak-Gi;Lee Jae-Hyeong;Lee Jong-In
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.861-864
    • /
    • 2006
  • In this paper conduction phenomena have been considered for nano structure double gate MOSFET, using the analytical model. The Possion equation is used to obtain the analytical model. The conduction mechanisms to have an influence on current conduction are thermionic emission and tunneling current, and subthreshold swings of this paper is compared with those of two dimensional simulation to verify this model. The deviation of current path and the influence of current path on subthreshold swing have been considered according to the dimensional parameters of double gate MOSFET, i.e. gate length, gateoxide thickness, channel thickness. The optimum channel doping concentration is determined as the deviation of conduction path is considered according to channel doping concentration.

  • PDF

Parameter dependent conduction path for nano structure double gate MOSFET (나노구조 이중게이트 MOSFET에서 전도중심의 파라미터 의존성)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.3
    • /
    • pp.541-546
    • /
    • 2008
  • In this paper, conduction phenomena have been considered for nano structure double gate MOSFET, using the analytical model. The Possion equation is used to analytical model. The conduction mechanisms to have an influence on current conduction are thermionic emission and tunneling current, and subthreshold swings of this paper are compared with those of two dimensional simulation to verify this model. The deviation of current path and the influence of current path on subthreshold swing have been considered according to the dimensional parameters of double gate MOSFET, i.e. gate length, gate oxide thickness, channel thickness. The optimum channel doping concentration is determined as the deviation of conduction path is considered according doping concentration.

Development and verification of PWR core transient coupling calculation software

  • Li, Zhigang;An, Ping;Zhao, Wenbo;Liu, Wei;He, Tao;Lu, Wei;Li, Qing
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3653-3664
    • /
    • 2021
  • In PWR three-dimensional transient coupling calculation software CORCA-K, the nodal Green's function method and diagonal implicit Runge Kutta method are used to solve the spatiotemporal neutron dynamic diffusion equation, and the single-phase closed channel model and one-dimensional cylindrical heat conduction transient model are used to calculate the coolant temperature and fuel temperature. The LMW, NEACRP and PWR MOX/UO2 benchmarks and FangJiaShan (FJS) nuclear power plant (NPP) transient control rod move cases are used to verify the CORCA-K. The effects of burnup, fuel effective temperature and ejection rate on the control rod ejection process of PWR are analyzed. The conclusions are as follows: (1) core relative power and fuel Doppler temperature are in good agreement with the results of benchmark and ADPRES, and the deviation between with the reference results is within 3.0% in LMW and NEACRP benchmarks; 2) the variation trend of FJS NPP core transient parameters is consistent with the results of SMART and ADPRES. And the core relative power is in better agreement with the SMART when weighting coefficient is 0.7. Compared with SMART, the maximum deviation is -5.08% in the rod ejection condition and while -5.09% in the control rod complex movement condition.

급속금형제작 : 분말주조에 의한 Perfect Shape에의 도전

  • 임용관;김범수;배원병
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.191-194
    • /
    • 1995
  • The business of manufacturing is increasingly becomeing time-compresssing, precise and long-life oiented, owing to various needs form the consumers and harsh global competition. with the emergence of the layer laminate maunfacturing methods, it is possible to prototypes directly from 3D CAD and additive process, the production time and cost have shortened dramatically. However there are some problems like surface-step, dimensional deviation and warp. A newly developed powder casting is suitable for rapid-manufacturing metallic tools. Powder casting can serve as a promising repid tooling method because of high density charateristics and low dimensional shrinkage below 0.1% during sintering and infiltration. By this process, we have realized significant time savings bypassing the wait for prototype tooling and cost savings eliminating the expense of conventional prototype tooling process.

  • PDF

3-Dimensional Computations within the Flow Passage of the Steam Turbine Nozzle with and without Tip Clearance (증기 터빈 노즐에서의 익단 간극에 의한 3차원 유동장의 수치 해석적 연구)

  • Jo, Su-Yong;O, Gun-Seop;Kim, Su-Yong;Yun, Ui-Su
    • 연구논문집
    • /
    • s.25
    • /
    • pp.55-65
    • /
    • 1995
  • Three-dimensional incompressible turbulent flow fields within the passage of the steam turbine nozzle with/without tip clearance have been simulated by solving the Navier-Stokes equations with SIMPLE scheme. The extended k-e model is applied to modeling the Reynolds stresses. Grids in the computational domain are generated by solving the Poisson's equations to improve the smoothness and orthogonality. Flow losses, secondary flow, velocity profiles, and deviation angles are obtained. The computated results without tip clearance show good agreement with the experimental data.

  • PDF

Rapid Tooling : Challenge to Net Shape by Powder Casting (급속금형제작 (1): 분말주조에 의한 정형(正形)에의 도전)

  • 임용관;김범수;정해도;배원병
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.7
    • /
    • pp.85-90
    • /
    • 1998
  • The business of manufacturing is increasingly becoming time-compressing, precise and long-life oriented, owing to various needs from the consumers and harsh global competition. With the emergence of the layer laminate manufacturing method, it is possible to produce prototypes directly from 3D CAD and additive process, the production time and cost have shortened dramatically. However there are some problems like surface-step, dimensional deviation and warp. A newly developed powder casting is suitable for rapid-manufacturing metallic tools. Powder casting can serve as a promising rapid tooling method because of high density characteristics and low dimensional shrinkage below 0.1% during sintering and infiltration. By this process, we have realized significant time savings bypassing the wait for prototype tooling and cost savings eliminating the expense of conventional prototype tooling process.

  • PDF