• Title/Summary/Keyword: dimensional approach

Search Result 2,258, Processing Time 0.025 seconds

Using an equivalent continuum model for 3D dynamic analysis of nanocomposite plates

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.20 no.3
    • /
    • pp.623-649
    • /
    • 2016
  • Most of the early studies on plates vibration are focused on two-dimensional theories, these theories reduce the dimensions of problems from three to two by introducing some assumptions in mathematical modeling leading to simpler expressions and derivation of solutions. However, these simplifications inherently bring errors and therefore may lead to unreliable results for relatively thick plates. The main objective of this research paper is to present 3-D elasticity solution for free vibration analysis of continuously graded carbon nanotube-reinforced (CGCNTR) rectangular plates resting on two-parameter elastic foundations. The volume fractions of oriented, straight single-walled carbon nanotubes (SWCNTs) are assumed to be graded in the thickness direction. In this study, an equivalent continuum model based on the Eshelby-Mori-Tanaka approach is employed to estimate the effective constitutive law of the elastic isotropic medium (matrix) with oriented, straight carbon nanotubes (CNTs). The proposed rectangular plates have two opposite edges simply supported, while all possible combinations of free, simply supported and clamped boundary conditions are applied to the other two edges. The formulations are based on the three-dimensional elasticity theory. A semi-analytical approach composed of differential quadrature method (DQM) and series solution is adopted to solve the equations of motion. The fast rate of convergence of the method is demonstrated and comparison studies are carried out to establish its very high accuracy and versatility. The 2-D differential quadrature method as an efficient and accurate numerical tool is used to discretize the governing equations and to implement the boundary conditions. The convergence of the method is demonstrated and to validate the results, comparisons are made between the present results and results reported by well-known references for special cases treated before, have confirmed accuracy and efficiency of the present approach. The novelty of the present work is to exploit Eshelby-Mori-Tanaka approach in order to reveal the impacts of the volume fractions of oriented CNTs, different CNTs distributions, various coefficients of foundation and different combinations of free, simply supported and clamped boundary conditions on the vibrational characteristics of CGCNTR rectangular plates. The new results can be used as benchmark solutions for future researches.

The Basic Research of Road Design Simulation Using Digital Aerial Photos (수치항공사진을 이용한 도로설계시뮬레이션의 기초적 연구)

  • Oh, Il-Oh;Kang, Ho-Yun;Choi, Hyun;Kang, In-Joon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.2
    • /
    • pp.99-105
    • /
    • 2007
  • This research is about applying aerial photos to three-dimensional simulation of road design. Instead of existing road design approach using digital map, which inexactly represent some part of topography and landmarks, digital aerial photos are applied to three-dimensional road design to address such inexactness of the map. First of all, ortho-photos are made using aerial photos, and a digital elevation model is created by extracting DEM. Then, by applying the coordinates practically using in planar design to three-dimensional approach, this model will be much helpful in the analyses of road route and viewscape. In addition, through the use of Virtual GIS, many evaluation factors such as urban design, flora, soil, water channel or road shape, flood plan are used for examination, and the effectiveness of applying three-dimensional simulation based on such route design standard is to be reviewed. In this paper, a basic research about three-dimensional design of structures is performed, and through the three-dimensional design, some effective determination to decision-making was carried out. Hereafter, it appears some research regarding environment-friendly construction and design should be followed.

Finite Element Simulation of Hot forging of Special Purpose Large Crankshafts (대형 크랭크샤프트 단조 공정의 컴퓨터 시뮬레이션)

  • Park, J.H.;Lee, M.C.;Park, T.H.;Cho, B.J.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.297-300
    • /
    • 2008
  • In this paper, a simple and computationally efficient approach to non-isothermal three-dimensional analysis of hot forging processes is presented based on rigid-thermoviscoplastic finite element method. In the approach, the temperatures of dies are considered to be constant. Two hot forging processes of large crank shafts ranging from 800 to 1000 kg are simulated using the simple approach.

  • PDF

형상보건을 이용한 유한요소 격자생성

  • Lee, Won-Yang;Choi, Young;Cho, Sung-Wook
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.298-302
    • /
    • 1994
  • A three dimensional FE mesh generation scheme based on mapping approach is proposed in this study. A volume in Euclcdian space is represented by composite hyperpatches which are piecewise cubic functions with parameters u,v,w. A key idea in the proposed approach is that sampled grid data points only on the boundary surfaces are needed for the shape representation. Inner points which are necessary of form a hyperpatch are internally generated by Coons patches. This approach is most appropriate for the shapes which are compositions of hexahedron-like shapes and also severely curved.

  • PDF

Three-Dimensional Shape Reconstruction from Images by Shape-from-Silhouette Technique and Iterative Triangulation

  • Cho, Jung-Ho;Samuel Moon-Ho Song
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1665-1673
    • /
    • 2003
  • We propose an image-based three-dimensional shape determination system. The shape, and thus the three-dimensional coordinate information of the 3-D object, is determined solely from captured images of the 3-D object from a prescribed set of viewpoints. The approach is based on the shape-from-silhouette (SFS) technique, and the efficacy of the SFS method is tested using a sample data set. The extracted three-dimensional shape is modeled with polygons generated by a new iterative triangulation algorithm, and the polygon model can be exported to commercial software. The proposed system may be used to visualize the 3-D object efficiently, or to quickly generate initial CAD data for reverse engineering purposes, including three dimensional design applications such as 3-D animation and 3-D games.

Various types of modelling for scale parameter in Weibull intensity function for two-dimensional warranty data

  • Baik, Jai-Wook;Jo, Jin-Nam
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.3
    • /
    • pp.555-560
    • /
    • 2010
  • One-dimensional approach to two-dimensional warranty data involves modeling us- age as a function of time. Iskandar (1993) suggests a simple linear model for usage. However, simple linear form of intensity function is of limited value to model the situa-tion where the intensity varies over time. In this study Weibull intensity is considered where the scale parameter is expressed in terms of different models. We will nd out how each parameter in the model a ects the warranty cost and which model gives a bigger number of failures within the two-dimensional warranty region.

Topology Optimization Using the Element Connectivity Parameterization Method in Three Dimensional Design Domain (3차원 설계 영역에서의 요소 연결 매개법을 이용한 위상 최적 설계)

  • Ho Yoon Gil;Young Kim Yoon;Soo Joung Yuung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.7 s.238
    • /
    • pp.990-997
    • /
    • 2005
  • The objective of this paper is to present the element connectivity parameterization (ECP) fur three dimensional problems. In the ECP method, a continuum structure is viewed as discretized finite elements connected by zero-length elastic links whose stiffness values control the degree of inter-element connectivity. The ECP method can effectively avoid the formation of the low-density unstable elements. These elements appear when the standard element density method is used for geometrical nonlinear problems. In this paper, this ECP method developed fur two-dimensional problems is expanded to the design of three-dimensional geometrical nonlinear structures. Among others, the automatic procedure converting standard finite element models to the models suitable for the ECP approach is developed and applied for optimization problems defined on general three-dimensional design domains.

Multi-Dimensional Complex Emotional Model for Various Complex Emotional Expression using Human Friendly Robot System (인간 친화 로봇의 다양한 복합 감정 표현을 위한 다차원 복합 감정 모델 설계)

  • Ahn, Ho-Seok;Choi, Jin-Young
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.3
    • /
    • pp.210-217
    • /
    • 2009
  • This paper introduces a design of multi-dimensional complex emotional model for various complex emotional expression. It is a novel approach to design an emotional model by comparison with conventional emotional model which used a three-dimensional emotional space with some problems; the discontinuity of emotions, the simple emotional expression, and the necessity of re-designing the emotional model for each robot. To solve these problems, we have designed an emotional model. It uses a multi-dimensional emotional space for the continuity of emotion. A linear model design is used for reusability of the emotional model. It has the personality for various emotional results although it gets same inputs. To demonstrate the effectiveness of our model, we have tested with a human friendly robot.

  • PDF

인공장기

  • 민병구
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.112-113
    • /
    • 1989
  • Two-Dimensional modelling of the Cochlear biomechanics is presented in this paper. The Laplace partial differential equation which represents the fluid mechanics of the Cochlea has been transformed into two-dimensional electrical transmission line. The procedure of this transformation is explained in detail. The comparison between one and two dimensional models is also presented. This electrical modelling of the basilar membrane (BM) is clearly useful for the next approach to the further. Development of active elements which are essential in the producing of the sharp tuning of the BM. This paper shows that two-dimension model is qualitatively better than one-dimensional model both in amplitude and phase responses of the BM displacement. The present model is only for frequency response. However because the model is electrical, the two-dimensional transmission line model can be extended to time response without any difficult.

  • PDF

A Dynamic Variational-Asymptotic Procedure for Isotropic Plates Analysis (등방성 판의 동적 변분-점근적 해석)

  • Lee, Su-Bin;Lee, Chang-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.72-79
    • /
    • 2021
  • The present paper aims to set forth a two-dimensional theory for the dynamics of plates that is valid over a large range of excitation. To construct a dynamic plate theory within the long-wavelength approximation, two dimensional-reduction procedures must be used for analyzing the low- and high-frequency behaviors under the dynamic variational-asymptotic method. Moreover, a separate and logically independent step for the short-wavelength regime is introduced into the present approach to avoid violation of the positive definiteness of the derived energy functional and to facilitate qualitative description of the three-dimensional dispersion curve in the short-wavelength regime. Two examples are presented to demonstrate the capabilities and accuracy of all of the formulas derived herein by using various dispersion curves through comparison with the three-dimensional finite element method.