• Title/Summary/Keyword: dimension spectra

Search Result 37, Processing Time 0.024 seconds

Spectra of Higher Spin Operators on the Sphere

  • Doojin Hong
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.1
    • /
    • pp.105-122
    • /
    • 2023
  • We present explicit formulas for the spectra of higher spin operators on the subbundle of the bundle of spinor-valued trace free symmetric tensors that are annihilated by Clifford multiplication over the standard sphere in odd dimension. In the even dimensional case, we give the spectra of the square of such operators. The Dirac and Rarita-Schwinger operators are zero-form and one-form cases, respectively. We also give eigenvalue formulas for the conformally invariant differential operators of all odd orders on the subbundle of the bundle of spinor-valued forms that are annihilated by Clifford multiplication in both even and odd dimensions on the sphere.

Plasmonic Effect on Graphene Metal Hybrid Films

  • Park, Si Jin;Kang, Seong Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.468-468
    • /
    • 2013
  • Self-assembled silver nanoparticles were synthesized on a graphene film to investigate plasmonic effect. Graphene was synthesized on glass substrate using chemical vapor deposition method and transfer process. Silver nanoparticles were formed using thermal evaporator and post-annealing process. The shape of silver nanoparticles was measured using a scanning electron microscopy. The resonance wavelength of plasmonic effect on graphene-silver nanoparticles was measured using transmittance spectra. The plasmon resonance wavelength was increased from 400 nm to 424 nm according to the lateral dimension of silver nanoparticles. Also we confirmed a strong plasmon effect form Raman spectra, which were measured on graphene-silver nanoparticles. The result shows that plasmon resonance wavelength could be controlled by lateral dimension of silver nanoparticles, and transparent conductive films based on plasmonic graphene could be developed.

  • PDF

METRIC THEOREM AND HAUSDORFF DIMENSION ON RECURRENCE RATE OF LAURENT SERIES

  • Hu, Xue-Hai;Li, Bing;Xu, Jian
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.157-171
    • /
    • 2014
  • We show that the recurrence rates of Laurent series about continued fractions almost surely coincide with their pointwise dimensions of the Haar measure. Moreover, let $E_{{\alpha},{\beta}}$ be the set of points with lower and upper recurrence rates ${\alpha},{\beta}$, ($0{\leq}{\alpha}{\leq}{\beta}{\leq}{\infty}$), we prove that all the sets $E_{{\alpha},{\beta}}$, are of full Hausdorff dimension. Then the recurrence sets $E_{{\alpha},{\beta}}$ have constant multifractal spectra.

Two Dimensional Transfer Modes in $CH_2$ Spin System

  • NamGoong Hyun
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.10 no.1
    • /
    • pp.59-73
    • /
    • 2006
  • Spin-lattice relaxation pathway of $CH_2$ spin system by two dimensional NOESY sequence has been discussed. Two-dimensional spectra governed by dipolar relaxation mechanism were simulated in term of transfer mode, the generalization of conventionally used magnetization mode in one dimension. The transfer matrix directly related to the Redfield relaxation matrix can be constructed by the multiplet of transfer mode. The observable relaxation transfer modes causes to variation of the off-diagonal signal intensity of phase sensitive NOESY spectra from which variable spectral density can be extracted with simple group theoretical calculation. The variation of the J-coupling peak intensity as a function of the mixing time in 2-D spectra for $n-Undecane-5-^{13}C$ and Bromoacetic $2-^{13}C$ acid has been theoretically traced.

  • PDF

A Study on the Chemical State in the ONO Superthin Film by Second Derivative Auger Spectra (2차 미분 Auger 스펙트럼을 이용한 ONO 초박막의 결합상태에 관한 연구)

  • 이상은;윤성필;김선주;서광열
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.10
    • /
    • pp.778-783
    • /
    • 1998
  • Film characteristics of thin ONO dielectric layers for MONOS(metal-oxide-nitride-oxide-semiconductor) EEPROM was investigated by TEM, AES and AFM. Seocnd derivative spectra of Auger Si LVV overlapping peak provide useful information fot chemical state analysis of superthin film. The ONO film with dimension of tunnel oxide 23$\AA$, nitride 33$\AA$, and blocking oxide 40$\AA$ was fabricated. During deposition of the LPCVD nitride film on tunnel oxide, this thin oxide was nitrized. When the blocking oxide was deposited on the nitride film, the oxygen not only oxidized the nitride surface, but diffused through the nitride. The results of ONO film analysis exhibits that it is made up of $SiO_2$ (blocking oxide)/O-rich SiON(interface)/N-rich SiON(nitride)/ O-rich SiON(tunnel oxide)

  • PDF

Analysis of Magnetic Permeability Spectra of Metamaterials Composed of Cut Wire Pairs by Circuit Theory

  • Lim, Jun-Hee;Kim, Sung-Soo
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.187-191
    • /
    • 2016
  • Retrieving the equivalent electromagnetic parameters (permittivity and permeability) plays an important role in the research and application of metamaterials. Frequency dispersion of magnetic permeability has been theoretically predicted in a metamaterial composed of cut wire pairs (CWP) separated by dielectric substrate on the basis of circuit theory. Magnetic resonance resulting from antiparallel currents between the CWP is observed at the frequency of minimum reflection loss (corresponding to absorption peak) and effective resonator size can be determined. Having calculated the circuit parameters (inductance L, capacitance C) and resonance frequency from CWP dimension, the frequency dispersion of permeability of Lorentz like magnetic response can be predicted. The simulated resonance frequency and permeability spectra can be explained well on the basis of the circuit theory of an RLC resonator.

Chemical Structure Analysis on the ONO Superthin Film by Second Derivative AES Spectra (2차 미분 AES 스펙트럼에 의한 ONO 초박막의 화학구조 분석)

  • 이상은;윤성필;김선주;서광열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.79-82
    • /
    • 1998
  • Film characteristics of thin ONO dielectric layers for MONOS(metal-oxide-nitride-oxide-semiconductor) EEPRM was investigated by AES and AFM. Second derivative spectra of AES Si LVV overlapping peak provided useful information for chemical state analysis of superthin film. The ONO films with dimension of tunneling oxide 24${\AA}$, nitride 33${\AA}$, and blocking oxide 40${\AA}$ were fabricated. During deposition of the LPCVD nitride films on tunneling oxide, this thin oxide was nitrized. When the blocking oxide were deposited on the nitride film, the oxygen not only oxidized the nitride surface, but diffused through the nitride. The results of ONO film analysis exhibits that it is made up of SiO$_2$(blocking oxide)/O-rich SiON(interface/N-rich SiON(nitride)/-rich SiON(interface)/N-rich SiON(nitride)/O-rich SiON(tunneling oxide).

  • PDF

An improved time-domain approach for the spectra-compatible seismic motion generation considering intrinsic non-stationary features

  • Feng Cheng;Jianbo Li;Zhixin Ding;Gao Lin
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.968-980
    • /
    • 2023
  • The dynamic structural responses are sensitive to the time-frequency content of seismic waves, and seismic input motions in time-history analysis are usually required to be compatible with design response spectra according to nuclear codes. In order to generate spectra-compatible input motions while maintaining the intrinsic non-stationarity of seismic waves, an improved time-domain approach is proposed in this paper. To maintain the nonstationary characteristics of the given seismic waves, a new time-frequency envelope function is constructed using the Hilbert amplitude spectrum. Based on the intrinsic mode functions (IMFs) obtained from given seismic waves through variational mode decomposition, a new corrective time history is constructed to locally modify the given seismic waves. The proposed corrective time history and time-frequency envelope function are unique for each earthquake records as they are extracted from the given seismic waves. In addition, a dimension reduction iterative technique is presented herein to simultaneously superimpose corrective time histories of all the damping ratios at a specific frequency in the time domain according to optimal weights, which are found by the genetic algorithm (GA). Examples are presented to show the capability of the proposed approach in generating spectra-compatible time histories, especially in maintaining the nonstationary characteristics of seismic records. And numerical results reveal that the modified time histories generated by the proposed method can obtain similar dynamic behaviors of AP1000 nuclear power plant with the natural seismic records. Thus, the proposed method can be efficiently used in the design practices.

The long-term centimeter variability of active galactic nuclei: A new relation between variability timescale and black hole mass

  • Park, Jongho;Trippe, Sascha
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.36.2-37
    • /
    • 2016
  • We study the long-term radio variability of 43 radio bright AGNs by exploiting the data base of the University of Michigan Radio Astronomy Observatory (UMRAO) monitoring program. The UMRAO database provides high quality lightcurves spanning 25 - 32 years in time at three observing frequencies, 4.8, 8, and 14.5 GHz. We model the periodograms (temporal power spectra) of the observed lightcurves as simple power-law noise (red noise, spectral power $P(f){\propto}f^{-{\beta}}$ using Monte Carlo simulations, taking into account windowing effects (red-noise leak, aliasing). The power spectra of 39 (out of 43) sources are in good agreement with the models, yielding a range in power spectral index (${\beta}$) from ${\approx}1$ to ${\approx}3$. We find a strong anti-correlation between ${\beta}$ and the fractal dimension of the lightcurves, which provides an independent check of the quality of our modelling of power spectra. We fit a Gaussian function to each flare in a given lightcurve to obtain the flare duration. We discover a correlation between ${\beta}$ and the median duration of the flares. We use the derivative of a lightcurve to obtain a characteristic variability timescale which does not depend on the assumed functional form of the flares, incomplete fitting, and so on. We find that, once the effects of relativistic Doppler boosting on the observed timescales are corrected, the variability timescales of our sources are proportional to the black hole mass to the power of ${\alpha}=1.70{\pm}0.49$. We see an indication for AGNs in different regimes of accretion rate, flat spectrum radio quasars and BL Lac objects, having different scaling relations with ${\alpha}{\approx}1$ and ${\approx}2$, respectively. We find that modelling the periodograms of four of our sources requires the assumption of broken powerlaw spectra. From simulating lightcurves as superpositions of exponential flares we conclude that strong overlap of flares leads to featureless simple power-law periodograms of AGNs at radio wavelengths in most cases (The paper is about to be submitted to ApJ).

  • PDF