• Title/Summary/Keyword: dihydrochalcomycin

Search Result 3, Processing Time 0.015 seconds

Characterization of a Chalcosyltransferase (gerGTII) in Dihydrochalcomycin Biosynthesis

  • Pageni, Binod Babu;Oh, Tae-Jin;Thuy, Ta Thi Thu;Sohng, Jae Kyung
    • Molecules and Cells
    • /
    • v.26 no.3
    • /
    • pp.278-284
    • /
    • 2008
  • An open reading frame, designated GerGTII and located downstream of the polyketide synthase genes, has been identified as a chalcosyltransferase by sequence analysis in the dihydrochalcomycin biosynthetic gene cluster of Streptomyces sp. KCTC 0041BP. The deduced product of gerGTII is similar to several glycosyltransferases, authentic and putative, and it displays a consensus sequence motif that appears to be characteristic of a sub-group of these enzymes. Specific disruption of gerGTII within the S. sp. KCTC 0041BP genome by insertional in-frame deletion method, resulted complete abolishment of dihydrochalcomycin and got the 20-O-mycinosyl-dihydrochalconolide as intermediate product in dihydrochalcomycin biosynthesis which was confirmed by electron spray ionization-mass spectrometry and liquid chromatography-mass spectrometry. Dihydrochalcomycin also was recovered after complementation of gerGTII.

Cloning and Characterization of a Gene Cluster for the Production of Polyketide Macrolide Dihydrochalcomycin in Streptomyces sp. KCTC 0041BP

  • Jaishy Bharat Prasad;Lim Si-Kyu;Yoo Ick-Dong;Yoo Jin-Cheol;Sohng Jae-Kyung;Nam Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.764-770
    • /
    • 2006
  • Dihydrochalcomycin (GERI-155), produced by Streptomyces sp. KCTC-0041BP isolated from Korean soil, is a 16-membered macrolide antibiotic consisting of two deoxysugar moieties at C-5 and C-20 positions of a branched lactone ring. The cloning and sequencing of a gene cluster for dihydrochalcomycin biosynthesis revealed a 63-kb nucleotide region containing 25 open reading frames (ORFs). The products of all of these 25 ORFs playa role in dihydrochalcomycin biosynthesis and self-resistance against the compounds synthesized. At the core of this cluster lies a 39.6-kb polyketide synthase (PKS) region encoding eight modules in five giant multifunctional protein-coding genes (gerSI-SV). The genes responsible for the biosynthesis of deoxysugar moieties, D-chalcose and D-mycinose, and their modification and attachment were found on either side of this PKS region. The involvement of this gene cluster in dihydrochalcomycin biosynthesis was confirmed by disruption of the dehydratase (DH) domain in module 3 of the PKS gene and by metabolite analysis.