• Title/Summary/Keyword: digital signal process

Search Result 527, Processing Time 0.034 seconds

A Digital Readout IC with Digital Offset Canceller for Capacitive Sensors

  • Lim, Dong-Hyuk;Lee, Sang-Yoon;Choi, Woo-Seok;Park, Jun-Eun;Jeong, Deog-Kyoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.3
    • /
    • pp.278-285
    • /
    • 2012
  • A digital readout IC for capacitive sensors is presented. Digital capacitance readout circuits suffer from static capacitance of sensors, especially single-ended sensors, and require large passive elements to cancel such DC offset signal. For this reason, to maximize a dynamic range with a small die area, the proposed circuit features digital filters having a coarse and fine compensation steps. Moreover, by employing switched-capacitor circuit for the front-end, correlated double sampling (CDS) technique can be adopted to minimize low-frequency device noise. The proposed circuit targeted 8-kHz signal bandwidth and oversampling ratio (OSR) of 64, thus a $3^{rd}$-order ${\Delta}{\Sigma}$ modulator operating at 1 MH was used for pulse-density-modulated (PDM) output. The proposed IC was designed in a 0.18-${\mu}m$ CMOS mixed-mode process, and occupied $0.86{\times}1.33mm^2$. The measurement results shows suppressed DC power under about -30 dBFS with minimized device flicker noise.

A Block-Based Adaptive Data Hiding Approach Using Pixel Value Difference and LSB Substitution to Secure E-Governance Documents

  • Halder, Tanmoy;Karforma, Sunil;Mandal, Rupali
    • Journal of Information Processing Systems
    • /
    • v.15 no.2
    • /
    • pp.261-270
    • /
    • 2019
  • In order to protect secret digital documents against vulnerabilities while communicating, steganography algorithms are applied. It protects a digital file from unauthorized access by hiding the entire content. Pixel-value-difference being a method from spatial domain steganography utilizes the difference gap between neighbor pixels to fulfill the same. The proposed approach is a block-wise embedding process where blocks of variable size are chosen from the cover image, therefore, a stream of secret digital contents is hidden. Least significant bit (LSB) substitution method is applied as an adaptive mechanism and optimal pixel adjustment process (OPAP) is used to minimize the error rate. The proposed application succeeds to maintain good hiding capacity and better signal-to-noise ratio when compared against other existing methods. Any means of digital communication specially e-Governance applications could be highly benefited from this approach.

Method for Eliminating Spurious Signal from Deramped SAR Raw Data (Deramped SAR 원시데이터에서 효율적인 Spurious 신호 제거 기법)

  • Lim, Byoung-Gyun;Ryu, Sang-Bum
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.239-245
    • /
    • 2016
  • Deramping technique has been widely used to acquire high resolution SAR(Synthetic Aperture Radar) images for the advantage of the data size and the processing time. However, unwanted spurious signals caused by SAR hardware can be leaked in the process of converting into a digital signal through the ADC(Analog-Digital Converter) and added in a echo signal. These tones make image quality degrade significantly. In order to solve this problem, the unwanted tones need to be detected by analysing the characteristic of the noise tone and then effectively removed from raw data. In this paper, we propose a method for efficiently removing noise tone on the raw data based on the characteristic of spurious signals.

A Digital Audio Watermark Using Wavelet Transform and Masking Effect (웨이브릿과 마스킹 효과를 이용한 디지털 오디오 워터마킹)

  • Hwang, Won-Young;Kang, Hwan-Il;Han, Seung-Soo;Kim, Kab-Il;Kang, Hwan-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2003.11b
    • /
    • pp.243-246
    • /
    • 2003
  • In this paper, we propose a new digital audio watermarking technique with the wavelet transform. The watermark is embedded by eliminating unnecessary information of audio signal based on human auditory system (HAS). This algorithm is an audio watermarking method, which does not require any original audio information in watermark extraction process. In this paper, the masking effect is used for audio watermarking, that is, post-tempera] masking effect. We construct the window with the synchronization signal and we extract the best frame in the window by using the zero-crossing rate (ZCR) and the energy of the audio signal. The watermark may be extracted by using the correlation of the watermark signal and the portion of the frame. Experimental results show good robustness against MPEG1-layer3 compression and other common signal processing manipulations. All the attacks are made after the D/A/D conversion.

  • PDF

Digital Fine Timing Tracker for Correlation Detection Receiver in IR-UWB Communication System (IR-UWB 시스템에서 상관 검출 수신기를 위한 디지털 미세 타이밍 추적기)

  • Ko Seok-Jun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9C
    • /
    • pp.905-913
    • /
    • 2006
  • In the impulse radio ultra-wideband communication systems, the residual timing offset exists when the acquisition and tracking of the timing synchronization is well done. And the offset affects the performance of the system dramatically. In order to compensate the offset, we present the digital phase-locked loop that uses the reference signal in the correlation detection receiver. First, we show the degradation of BER performance that is caused by the offset, and then compensation process of the timing tracker and performance improvement. In this paper, the timing detector in the tracker operates at the sampling period of frame level uses the correlation between received and reference signal. Also, we present the performance comparison by using the computer simulation results for different Gaussian monocycle pulses.

A 13.56 MHz Radio Frequency Identification Transponder Analog Front End Using a Dynamically Enabled Digital Phase Locked Loop

  • Choi, Moon-Ho;Yang, Byung-Do;Kim, Nam-Soo;Kim, Yeong-Seuk;Lee, Soo-Joo;Na, Kee-Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.1
    • /
    • pp.20-23
    • /
    • 2010
  • The analog front end (AFE) of a radio frequency identification transponder using the ISO 14443 type A standard with a 100% amplitude shift keying (ASK) modulation is proposed in this paper and verified by circuit simulations and measurements. This AFE circuit, using a 13.56 MHz carrier frequency, consists of a rectifier, a modulator, a demodulator, a regulator, a power on reset, and a dynamically enabled digital phase locked loop (DPLL). The DPLL, with a charge pump enable circuit, was used to recover the clock of a 100% modulated ASK signal during the pause period. A high voltage lateral double diffused metal-oxide semiconductor transistor was used to protect the rectifier and the clock recovery circuit from high voltages. The proposed AFE was fabricated using the $0.18\;{\mu}m$ standard CMOS process, with an AFE core size of $350\;{\mu}m\;{\times}\;230\;{\mu}m$. The measurement results show that the DPLL, using a demodulator output signal, generates a constant 1.695 MHz clock during the pause period of the 100% ASK signal.

Time-to-Digital Converter Using Synchronized Clock with Start and Stop Signals (시작신호 및 멈춤신호와 동기화된 클록을 사용하는 시간-디지털 변환기)

  • Choi, Jin-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.5
    • /
    • pp.893-898
    • /
    • 2017
  • A TDC(Time-to-Digital Converter) of counter-type is designed by $0.18{\mu}mCMOS$process and the supply voltage is 1.5 volts. The converted error of maximum $T_{CK}$ is occurred by the time difference between the start signal and the clock when the period of clock is $T_{CK}$ in the conventional TDC. And the converted error of -$T_{CK}$ is occurred by the time difference between the stop signal and the clock. However in order to compensate the disadvantage of the conventional TDC the clock is generated within the TDC circuit and the clock is synchronized with the start and stop signals. In the designed TDC circuit the conversion error is not occurred by the difference between the start signal and the click and the magnitude of conversion error is reduced (1/2)$T_{CK}$ by the time difference between the stop signal and the clock.

Development of A High-Speed Digital Maximum Selector Circuit With Internal Trigger-Signal Generator (내부 트리거 발생회로를 이용한 고속의 디지털 Maximum Selector 회로의 설계)

  • Yoon, Myung-Chul
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.2
    • /
    • pp.55-60
    • /
    • 2011
  • Most of neural network chips use an analog-type maximum selector circuit (MS). As the increase of integration level, the analog MS has difficulties in achieving sufficient resolution. Contrary, the digital-type MS is easy to get high resolution but slower than its analog counterparts. A new high-speed digital MS circuit called MSIT (Maximum Selector with Internal Trigger-signal) is presented in this paper. The MSIT has been designed to achieves both the high reliability by using trigger-signals and high speed by removing the unnecessary waiting times. The response time of MSIT is 3.4ns for 32 data with 10-bit resolution in the simulation with 1.2V, $0.13{\mu}m$-process model parameters, which is much faster than its analog counterparts. It shows that digital MS circuits like MSIT can achieve higher speed as well as higher resolution than analog MS circuits.

Research on Broadband Signal Processing Techniques for the Small Millimeter Wave Tracking Radar (소형 밀리미터파 추적 레이더를 위한 광대역 신호처리 기술 연구)

  • Choi, Jinkyu;Na, Kyoung-Il;Shin, Youngcheol;Hong, Soonil;Park, Changhyun;Kim, Younjin;Kim, Hongrak;Joo, Jihan;Kim, Sosu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.49-55
    • /
    • 2021
  • Recently, a small tracking radar requires the development of a small millimeter wave tracking radar having a high range resolution that can acquire and track a target in various environments and disable the target system with a single blow. Small millimeter wave tracking radar with high range resolution needs to implement a signal processor that can process wide bandwidth signals in real time and meet the requirements of small tracking radar. In this paper, we designed a signal processor that can perform the role and function of a signal processor for a small millimeter wave tracking radar. The signal processor for the small millimeter wave tracking radar requires the real-time processing of input signal of OOOMHz center frequency and OOOMHz bandwidth from 8 channels. In order to satisfy the requirements of the signal processor, the signal processor was designed by applying the high-performance FPGA (Field Programmable Gate Array) and ADC (Analog-to-digital converter) for pre-processing operations, such as DDC (Digital Down Converter) and FFT (Fast Fourier Transform). Finally, the signal processor of the small millimeter wave tracking radar was verified via performance test.

A VLSI Architecture for the Real-Time 2-D Digital Signal Processing (실시간 2차원 디지털 신호처리를 위한 VLSI 구조)

  • 권희훈
    • Information and Communications Magazine
    • /
    • v.9 no.9
    • /
    • pp.72-85
    • /
    • 1992
  • The throughput requirement for many digital signal processing is such that multiple processing units are essential for real-time implementation. Advances in VLSI technology make it feasible to design and implement computer systems consisting of a large number of function units. The research on a very high throughput VLSI architecture for digital signal processing applications requires the development of an algorithm, decomposition scheme which can minimize data communication requirements as well as minimize computational complexity. The objectives of the research are to investigate computationally efficient algorithms for solution of the class of problems which can be modeled as DLSI systems or adaptive system, and develop VLSI architectures and associated multiprocessor systems which can be used to implement these algorithms in real-time. A new VLSI architecture for real-time 2-D digital signal processing applications is proposed in this research. This VLSI architecture extends the concept of having a single processing units in a chip. Because this VLSI architecture has the advantage that the complexity and the number of computations per input does not increase as the size of the input data in increased, it can process very large 2-D date in near real-time.

  • PDF