• 제목/요약/키워드: digital periapical image

검색결과 31건 처리시간 0.021초

디지털영상을 이용한 치근이개부 실험병소의 판독능에 관한 연구 (An experimental study on the readability of digital images in the furcal bone defects)

  • 강형욱;황의환;이상래
    • Imaging Science in Dentistry
    • /
    • 제33권2호
    • /
    • pp.71-77
    • /
    • 2003
  • Purpose : To evaluate and compare the efficacy of digital radiographic images in the detection of bone loss at the bifurcation area of the mandibular first molar with traditional film-based periapical radiographs, Materials and Methods : One dried human mandible with minimal periodontal bone loss around the first molar was selected and an artificial alveolar bone defect at the bifurcation area was serially prepared over 18 steps. Images were taken using a direct CCD-based system and with F-speed periapical films. The images were evaluated by seven interpreters (3 radiologists, 3 periodontologists, and 1 general dentist) using a 5-point confidence rating scale. Results : The readability of both periapical radiographs and digital image increased as the size of the artificial lesion and exposure time increased (p < 0.05). Periapical radiographs offered greater readability of smaller bone defects than digital images, and the coefficient of variation of mean score between periapical radiographs and digital images showed a significant difference. Conclusion : The experimental results indicate that a significant difference in the coefficient of variation of mean score exists between periapical radiographs and digital images, and that traditional film-based periapical images offer greater readability of smaller bone defects than digital images can presently offer.

  • PDF

Image enhancement of digital periapical radiographs according to diagnostic tasks

  • Choi, Jin-Woo;Han, Won-Jeong;Kim, Eun-Kyung
    • Imaging Science in Dentistry
    • /
    • 제44권1호
    • /
    • pp.31-35
    • /
    • 2014
  • Purpose: This study was performed to investigate the effect of image enhancement of periapical radiographs according to the diagnostic task. Materials and Methods: Eighty digital intraoral radiographs were obtained from patients and classified into four groups according to the diagnostic tasks of dental caries, periodontal diseases, periapical lesions, and endodontic files. All images were enhanced differently by using five processing techniques. Three radiologists blindly compared the subjective image quality of the original images and the processed images using a 5-point scale. Results: There were significant differences between the image quality of the processed images and that of the original images (P< 0.01) in all the diagnostic task groups. Processing techniques showed significantly different efficacy according to the diagnostic task (P< 0.01). Conclusion: Image enhancement affects the image quality differently depending on the diagnostic task. And the use of optimal parameters is important for each diagnostic task.

경계강조 보간법을 이용한 디지털방사선사진상의 개선에 관한 연구 (EDGE-DETECT INTERPOLATION FOR DIRECT DIGITAL PERIAPICAL IMAGES)

  • 송남규;고광준
    • 치과방사선
    • /
    • 제28권1호
    • /
    • pp.73-85
    • /
    • 1998
  • The purpose of this study was to aid in the use of the digital images by edge-detect interpolation for direct digital periapical images using edge-detect interpolation. This study was performed by image processing of 20 digital periapical images; pixel replication, linear non-interpolation, linear interpolation. and edge-sensitive interpolation. The obtained results were as follows : 1. Pixel replication showed blocking artifact and serious image distortion. 2. Linear interpolation showed smoothing effect on the edge. 3. Edge-sensitive interpolation overcame the smoothing effect on the edge and showed better image.

  • PDF

인공적 인접면 치아우식증의 구내방사선사진과 디지털 영상의 진단능 평가 (DIAGNOSTIC ABILITY OF THE PERIAPICAL RADIOGRAPHS AND DIGITAL IMAGE IN THE DETECTION OF THE ARTIFICIAL PROXIMAL CARIES)

  • 허민석;유동수
    • 치과방사선
    • /
    • 제24권2호
    • /
    • pp.439-450
    • /
    • 1994
  • Recently, the digital image was introduced into radiological image. The digital image has the power of contrast enhancement, histogram control, and other digitally enhancement. At the point of the resolution, periapical radiograph is superior to the digital image, but enhanced digital procedure improves the diagnostic ability of the digital image. The purpose of this study was to evaluate the diagnostic ability of artificial proximal caries in conventional radiographs, digital radiographs and enhanced digital radiographs (histogram specification). ROC (Receiver Operating Characteristic) analysis and paired t-test were used for the evaluation of detectability, and following results were acquired: 1. The mean ROC area of conventional radiographs was 0.9274. 2. The mean ROC area of unenhanced digital image was 0.9168. 3. The mean ROC area of enhanced digital image was 0.9339. 4. The diagnostic ability of three imaging methods was not significant difference(p>0.05). So, the digital images had similar diagnostic ability of artificial proximal caries to conventional radiographs. If properly enhanced digital image, it may be superior to conventional radiographs.

  • PDF

근광장 측정에서 방사선 사진술의 정확도 (The Accuracy of the Radiographic Method in Root Canal Length Measurement)

  • 조은영;박창서
    • 치과방사선
    • /
    • 제28권2호
    • /
    • pp.471-489
    • /
    • 1998
  • For the successful endodontic treatment, root canal should be cleaned thoroughly by accurate mechanical and chemical canal preparation and sealed completely with canal filling material without damaging the periapical tissues. The accuracy of the root canal length measurement is a prerequisite for the success of the endodontic treatment, and the root canal length is often determined by the standard periapical radiographs and digital tactile sense. In this study, the accuracy and the clinical usefulness of Digora/sup (R)/, an intraoral digital imaging processor and the conventional standard radiographs were compared by measuring the length from the top of the file to the root apex. 30 single rooted premolars were invested in a uniformly sized blocks and No.25 K-file was inserted into and fixed in each canal. Each block was placed in equal distance and position to satisfy the principle of the bisecting angle and paralleling techniques and Digora/sup (R)/ system's image and standard periapical radiographs were taken. Each radiograph was examined by 3 different observers by measuring the length from top of the file to the root apex and each data was compared and analyzed. The results were as follows; 1. In the bisecting angle technique, the average difference between the Digora/sup (R)/ system and standard periapical radiograph was 0.002 mm and the standard deviation was 0.341 mm which showed no statistically significant difference between the two systems(p>0.05). Also, in the paralleling technique, the average difference between these two system was 0.007 mm and the standard deviation was 0.323 mm which showed no statistically significant difference between the two systems(p>0.05). 2. In Digora/sup (R)/ system, the average difference between the bisecting angle and paralleling technique was -0.336 mm and the standard deviation was 0.472 mm which showed a statistically significant difference between the two techniques(p<0.05). Also, in the standard periapical radiographs, the average difference between the bisecting angle and paralleling technique was 0.328 mm and the standard deviation was 0.517 mm which showed a statistically significant difference between these two techniques(p<0.05). 3. In Digora/sup (R)/ system and the standard periapical radiographs. there was a statistically significant difference between the measurement using the bisecting angle technique and the actual length(p<0.05), But there was no statistically significant difference between the measurement using the paralleling technique and the actuallength(p>0.05). In conclusion. the determination of the root canal length by using the Digora/sup (R)/ system can give us as good an image as the standard periapical radiograph and using the paralleling technique instead of the bisecting angle technique can give a measurement closer to the actual canal length. thereby contributing to a successful result. Also. considering the advantages of the digital imaging processor such as decreasing the amount of exposure to the patient. immediate use of the image. magnification of image size. control of the contrast and brightness and the ability of storing the image can give us good reason to replace the standard periapical radiographs.

  • PDF

Cone beam형 전산화단층영상과 치근단방사선영상의 치근단 병소에 대한 정량적인 분석 (Quantitative analysis of periapical lesions on cone beam computed tomograph and periapical radiograph)

  • 김진화;이완;김경수;노영채;김대석;이병도
    • Imaging Science in Dentistry
    • /
    • 제39권1호
    • /
    • pp.41-49
    • /
    • 2009
  • Purpose: To detect the progression of experimentally induced periapical lesions on periapical radiograph and cone beam computed tomograph (CBCT) by quantitative analysis. Materials and Methods: After the removal of coronal pulps from premolars of two Beagle dogs, the root canals of premolars were exposed to oral environment during one week and then sealed for 70 days. Digital periapical radiographs and CBCTs were taken at baseline and every 7 days for 77 days after pulp exposure. We examined occurrence and areas of periapical bone resorption. Three comparative groups of CBCT radiographs were prepared by average projection of thin slabs with different bucco-lingual thicknesses (0.1, 3.0, and 8.0 mm) using a 3D visualization software. Radiographic densities were compensated by image normalization. Digital images were processed with mathematical morphology operations. The radiographic density and morphological features of periapical lesions were compared among three groups of CBCT in different time points. Results: In the CBCT group with 0.1 mm thickness, radiographic density (p<0.05) and trabecular bone area (p<0.01) were significantly decreased at the fifth week. However, in the CBCT groups with 3 mm and 8 mm thickness and periapical radiographs, none of densitometric and morphological features showed any significant differences in different time points. Radiographic density of periapical lesion showed increasing tendency at the eleventh week after pulp exposure. Conclusion: Radiographic detection of periapical lesions was possible at the fifth week after pulp contamination by quantitative method and was affected by buccolingual bone thickness.

  • PDF

영상보간법을 이용한 디지털 치근단 방사선영상의 개선에 관한 연구 (A Study on the Improvement of Digital Periapical Images using Image Interpolation Methods)

  • 송남규;고광준
    • 치과방사선
    • /
    • 제28권2호
    • /
    • pp.387-413
    • /
    • 1998
  • Image resampling is of particular interest in digital radiology. When resampling an image to a new set of coordinate, there appears blocking artifacts and image changes. To enhance image quality, interpolation algorithms have been used. Resampling is used to increase the number of points in an image to improve its appearance for display. The process of interpolation is fitting a continuous function to the discrete points in the digital image. The purpose of this study was to determine the effects of the seven interpolation functions when image resampling in digital periapical images. The images were obtained by Digora, CDR and scanning of Ektaspeed plus periapical radiograms on the dry skull and human subject. The subjects were exposed to intraoral X-ray machine at 60kVp and 70 kVp with exposure time varying between 0.01 and 0.50 second. To determine which interpolation method would provide the better image, seven functions were compared; (1) nearest neighbor (2) linear (3) non-linear (4) facet model (5) cubic convolution (6) cubic spline (7) gray segment expansion. And resampled images were compared in terms of SNR(Signal to Noise Ratio) and MTF(Modulation Transfer Function) coefficient value. The obtained results were as follows ; 1. The highest SNR value(75.96dB) was obtained with cubic convolution method and the lowest SNR value(72.44dB) was obtained with facet model method among seven interpolation methods. 2. There were significant differences of SNR values among CDR, Digora and film scan(P<0.05). 3. There were significant differences of SNR values between 60kVp and 70kVp in seven interpolation methods. There were significant differences of SNR values between facet model method and those of the other methods at 60kVp(P<0.05), but there were not significant differences of SNR values among seven interpolation methods at 70kVp(P>0.05). 4. There were significant differences of MTF coefficient values between linear interpolation method and the other six interpolation methods (P< 0.05). 5. The speed of computation time was the fastest with nearest -neighbor method and the slowest with non-linear method. 6. The better image was obtained with cubic convolution, cubic spline and gray segment method in ROC analysis. 7. The better sharpness of edge was obtained with gray segment expansion method among seven interpolation methods.

  • PDF

디지털 공제방사선영상의 기하학적 보정에 관한 연구 (A study on the geometric correction for the digital subtraction radiograph)

  • 임숙영;고광준
    • Imaging Science in Dentistry
    • /
    • 제31권1호
    • /
    • pp.23-34
    • /
    • 2001
  • Purpose : To develop a new subtraction program for registering digital periapical images based on the correspondence of anatomic structures. Materials and Methods: The digital periapical images were obtained by Digora system with Rinn XCP equipment after translation of 1-16 mm, and rotation of 2-20° at the premolar and molar areas of the human dried mandible. The new subtraction program, NIH Image program and Emago/Advanced program were compared by the peak-signal-to noise ratio (PSNR). Results : The new subtraction program was superior to NIH Images program and Emagol Advanced program up to 16 mm translation and horizontal angulation up to 4°. Conclusion: The new subtraction program can be used for subtracting digital periapical images.

  • PDF

Diagnostic accuracy of artificially induced vertical root fractures: a comparison of direct digital periapical images with conventional periapical images

  • Lee Ji-Un;Kwon Ki-Jeong;Koh Kwang-Joon
    • Imaging Science in Dentistry
    • /
    • 제34권4호
    • /
    • pp.185-190
    • /
    • 2004
  • Purpose: To compare the diagnostic accuracy for the detection of root fractures in CMOS-based digital periapical images with conventional film-based periapical images. Materials and Methods: Sixty extracted single-root human teeth with closed apices were prepared endodontically and divided into two groups; artificially induced vertical root fracture group and control group. All radiographs were obtained using the paralleling technique. The radiographs were examined by 4 observers three times within a 4 week interval. Receiver operating characteristic (ROC) analysis was carried out using data obtained from four observers. Intra- and inter-examiner agreements were computed using kappa analysis. Results: The area under the ROC curve (Az) was used as an indicator of the diagnostic accuracy of the imaging system. Az values were as follows: direct-digital images; 0.93, film-based images; 0.92, and inverted digital images; 0.91. There was no significant difference between imaging modalities (P<0.05). The kappa value of inter-observer agreement was 0.42 (range: 0.28-0.60) and intra-observer agreement was 0.57 (range: 0.44-0.75). Conclusion : There is no statistical difference in diagnostic accuracy for the detection of vertical root fractures between digital periapical images and conventional periapical images. The results indicate that the CMOS sensor is a good image detector for the evaluation of vertical root fractures.

  • PDF

Digital radiography를 이용한 치근단 X선 사진의 판독능에 관한 실험적 연구 (A STUDY ON THE READABILITY OF PERIAPICAL RADIOGRAPH WITH THE DIGITAL RADIOGRAPHY)

  • 이곤;이상래
    • 치과방사선
    • /
    • 제22권1호
    • /
    • pp.117-127
    • /
    • 1992
  • This investigation was performed to test the readability of the video based digital radiography, that can be applied clinically, compared with the periapical radiograph. The experiments were performed with IBM-PC/AT compatible, video camera and ADC (analog-digital converter). And spatial resolution was 512 X 480 with 256 (8 bit) gray levels. The radiographs obtained by using variable steps of exposure time were digitized. and then the digital images were analyzed. The obtained results were as follows: 1. There was no remarkable difference in readability between the radiographs and their digital images. However, under over exposure the digital images were superior to the radiographs in readability and vice versa. 2. As the exposure time was increased, the gray level of the digital image was decreased proportionally. 3. The correlation beween the regions of interest and the aluminum step wedges were relatively close; R=0.9965 (p <0.001).

  • PDF