• Title/Summary/Keyword: digital image processing (DIP)

Search Result 12, Processing Time 0.019 seconds

A study on development of simulation model of Underwater Acoustic Imaging (UAI) system with the inclusion of underwater propagation medium and stepped frequency beam-steering acoustic array

  • L.S. Praveen;Govind R. Kadambi;S. Malathi;Preetham Shankpal
    • Ocean Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.195-224
    • /
    • 2023
  • This paper proposes a method for the acoustic imaging wherein the traditional requirement of the relative movement between the transmitter and target is overcome. This is facilitated through the beamforming acoustic array in the transmitter, in which the target is illuminated by the array at various azimuth and elevation angles without the physical movement of the acoustic array. The concept of beam steering of the acoustic array facilitates the formation of the beam at desired angular positions of azimuth and elevation angles. This paper substantiates that the combination of illumination of the target from different azimuth and elevation angles with respect to the transmitter (through the beam steering of beam forming acoustic array) and the beam steering at multiple frequencies (through SF) results in enhanced reconstruction of images of the target in the underwater scenario. This paper also demonstrates the possibility of reconstruction of the image of a target in underwater without invoking the traditional algorithms of Digital Image Processing (DIP). This paper comprehensively and succinctly presents all the empirical formulae required for modelling the acoustic medium and the target to facilitate the reader with a comprehensive summary document incorporating the various parameters of multi-disciplinary nature.

Development of Deep Learning AI Model and RGB Imagery Analysis Using Pre-sieved Soil (입경 분류된 토양의 RGB 영상 분석 및 딥러닝 기법을 활용한 AI 모델 개발)

  • Kim, Dongseok;Song, Jisu;Jeong, Eunji;Hwang, Hyunjung;Park, Jaesung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.4
    • /
    • pp.27-39
    • /
    • 2024
  • Soil texture is determined by the proportions of sand, silt, and clay within the soil, which influence characteristics such as porosity, water retention capacity, electrical conductivity (EC), and pH. Traditional classification of soil texture requires significant sample preparation including oven drying to remove organic matter and moisture, a process that is both time-consuming and costly. This study aims to explore an alternative method by developing an AI model capable of predicting soil texture from images of pre-sorted soil samples using computer vision and deep learning technologies. Soil samples collected from agricultural fields were pre-processed using sieve analysis and the images of each sample were acquired in a controlled studio environment using a smartphone camera. Color distribution ratios based on RGB values of the images were analyzed using the OpenCV library in Python. A convolutional neural network (CNN) model, built on PyTorch, was enhanced using Digital Image Processing (DIP) techniques and then trained across nine distinct conditions to evaluate its robustness and accuracy. The model has achieved an accuracy of over 80% in classifying the images of pre-sorted soil samples, as validated by the components of the confusion matrix and measurements of the F1 score, demonstrating its potential to replace traditional experimental methods for soil texture classification. By utilizing an easily accessible tool, significant time and cost savings can be expected compared to traditional methods.