• Title/Summary/Keyword: digital correction logic

Search Result 21, Processing Time 0.039 seconds

A 10-b 500 MS/s CMOS Folding A/D Converter with a Hybrid Calibration and a Novel Digital Error Correction Logic

  • Jun, Joong-Won;Kim, Dae-Yun;Song, Min-Kyu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • A 10-b 500 MS/s A/D converter (ADC) with a hybrid calibration and error correction logic is described. The ADC employs a single-channel cascaded folding-interpolating architecture whose folding rate (FR) is 25 and interpolation rate (IR) is 8. To overcome the disadvantage of an offset error, we propose a hybrid self-calibration circuit at the open-loop amplifier. Further, a novel prevision digital error correction logic (DCL) for the folding ADC is also proposed. The ADC prototype using a 130 nm 1P6M CMOS has a DNL of ${\pm}0.8$ LSB and an INL of ${\pm}1.0$ LSB. The measured SNDR is 52.34-dB and SFDR is 62.04-dBc when the input frequency is 78.15 MHz at 500 MS/s conversion rate. The SNDR of the ADC is 7-dB higher than the same circuit without the proposed calibration. The effective chip area is $1.55mm^2$, and the power dissipates 300 mW including peripheral circuits, at a 1.2/1.5 V power supply.

Digital correction and calibration circuits for a high-resolution CMOS pipelined A/D converter (파이프라인 구조를 가진 고해상도 CMOS A/D 변환기를 위한 디지탈 교정 및 보정 회로)

  • 조준호;최희철;이승훈
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.6
    • /
    • pp.230-238
    • /
    • 1996
  • In this paper, digital corrction and calibration circuit for a high-resolution CMOS pipelined A/D converter are proposed. The circuits were actually applied to a 12 -bit 4-stage pipelined A/D converter which was implemented in a 0.8${\mu}$m p-well CMOS process. The proposed digital correction logic is based on optimum multiplexer and two nonoverlapping clock phases resulting in a small die area snd a modular pipelined architecture. The propsoed digital calibration logic which consists of calibration control logic, error averaging logic, and memory can effectively perform self-calibration with little modifying analog functional bolcks of a conventional pipelined A/D conveter.

  • PDF

A Study of Improved Auto Exposure System for Digital Still Camera Using Fuzzy Logic (소형화된 디지털카메라의 AE 시스템 개선에 관한 연구)

  • Cho, Sun-Ho;Lee, Sang-Yong;Tak, In-Jae;Park, Chong-Kug
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.8
    • /
    • pp.798-803
    • /
    • 2007
  • In case of minimized digital camera and mobile digital camera, it's difficult to get the high quality image by conventional AE(Auto Exposure) algorithm because of restriction of system organization. In this paper, a new algorithm that adopts a target setting, a compensation of feedback delay and a gamma correction, etc, are suggested for improving a noise increase and an output sensitivity decrease due to system minimization. We also suggest a method using fuzzy logic which can decide more effectively the ES(Electric Shutter) value and the AGC(Analog Gain Control) value than conventional system.

Hardware Implementation of Time Skew Calibration Block for Time Interleaved ADC (TI ADC를 위한 시간 왜곡 교정 블록의 하드웨어 구현)

  • Khan, Sadeque Reza;Choi, Goangseog
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.3
    • /
    • pp.35-42
    • /
    • 2017
  • This paper presents hardware implementation of background timing-skew calibration technique for time-interleaved analog-to-digital converters (TI ADCs). The timing skew between any two adjacent analog-digital (A/D) channels is detected by using pure digital Finite Impulse Response (FIR) delay filter. This paper includes hardware architecture of the system, main units and small sub-blocks along with control logic circuits. Moreover, timing diagrams of logic simulations using ModelSim are provided and discussed for further understanding about simulations. Simulation process in MATLAB and Verilog is also included and provided with basic settings need to be done. For hardware implementation it not practical to work with all samples. Hence, the simulation is conducted on 512 TI ADC output samples which are stored in the buffer simultaneously and the correction arithmetic is done on those samples according to the time skew algorithm. Through the simulated results, we verified the implemented hardware is working well.

Design of Timing Register Structure for Area Optimization of High Resolution and Low Power SAR ADC (고해상도 저전력 SAR ADC의 면적 최적화를 위한 타이밍 레지스터 구조 설계)

  • Min, Kyung-Jik;Kim, Ju-Sung;Cho, Hoo-Hyun;Pu, Young-Gun;Hur, Jung;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.8
    • /
    • pp.47-55
    • /
    • 2010
  • In this paper, a timing register architecture using demultiplexer and counter is proposed to reduce the area of the high resolution SAR type analog to digital converter. The area and digital power consumption of the conventional timing register based on the shift register is drastically increased, as the resolution is increased. On the other hand, the proposed architecture results in reduction of the area and the power consumption of the error correction logic of the SAR ADC. This chip is implemented with 0.18 um CMOS process. The area is reduced by 5.4 times and the digital power consumption is minimized compared with the conventional one. The 12 bits SAR ADC shows ENOB of 11 bits, power consumption of 2 mW, and conversion speed of 1 MSPS. The die area is $1 mm{\times}1mm$.

Modeling of Pipeline A/D converter with Verilog-A (Verilog-A를 이용한 파이프라인 A/D변환기의 모델링)

  • Park, Sang-Wook;Lee, Jae-Yong;Yoon, Kwang-Sub
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10C
    • /
    • pp.1019-1024
    • /
    • 2007
  • In this paper, the 10bit 20MHz pipelined analog-to-digital converter that is able to apply to WLAN system was modeled for ADC design. Each blocks in converter such as sample and hold amplifier(SHA), comparator, multiplyng DAC(MDAC), and digital correction logic(DCL) was modeled. The pipelined ADC with these modeled blocks takes 1/50 less time than the one of simulation using HSPICE.

A Design of the Real-Time Preprocessor for CMOS image sensor (CMOS 이미지 센서를 위한 실시간 전처리 프로세서의 설계)

  • 정윤호;이준환;김재석
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.224-227
    • /
    • 1999
  • This paper presents a design of the real-time preprocessor for CMOS image sensor suitable to the digital camera applications. CMOS image sensor offers some advantages in on-chip integration, system power reduction, and low cost. However, it has a lower-quality image than CCDs. We describe an image enhancement algorithm, which includes color interpolation, color correction, gamma correction, sharpening, and automatic exposure control, to compensate for this disadvantage, and present its efficient hardware architecture to implement on the real-time processor. The presented real-time preprocessor was designed using VHDL, and it contains about 19.2K logic gates. We also implement our system on FPGA chips in order to provide the real-time adjustment and it was successfully tested.

  • PDF

An 8-b 1GS/s Fractional Folding CMOS Analog-to-Digital Converter with an Arithmetic Digital Encoding Technique

  • Lee, Seongjoo;Lee, Jangwoo;Lee, Mun-Kyo;Nah, Sun-Phil;Song, Minkyu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.5
    • /
    • pp.473-481
    • /
    • 2013
  • A fractional folding analog-to-digital converter (ADC) with a novel arithmetic digital encoding technique is discussed. In order to reduce the asymmetry errors of the boundary conditions for the conventional folding ADC, a structure using an odd number of folding blocks and fractional folding rate is proposed. To implement the fractional technique, a new arithmetic digital encoding technique composed of a memory and an adder is described. Further, the coding errors generated by device mismatching and other external factors are minimized, since an iterating offset self-calibration technique is adopted with a digital error correction logic. A prototype 8-bit 1GS/s ADC has been fabricated using an 1.2V 0.13 um 1-poly 6-metal CMOS process. The effective chip area is $2.1mm^2$(ADC core : $1.4mm^2$, calibration engine : $0.7mm^2$), and the power consumption is 88 mW. The measured SNDR is 46.22 dB at the conversion rate of 1 GS/s. Both values of INL and DNL are within 1 LSB.

A Low-Complexity Real-Time Barrel Distortion Correction Processor Combined with Color Demosaicking (컬러 디모자이킹이 결합된 저 복잡도의 실시간 배럴 왜곡 보정 프로세서)

  • Jeong, Hui-Seong;Park, Yun-Ju;Kim, Tae-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.57-66
    • /
    • 2014
  • This paper presents a low-complexity barrel distortion correction processor for wide-angle cameras. The proposed processor performs the barrel distortion correction jointly with the color demosaicking, so that the hardware complexity can be reduced significantly. In addition, to reduce the required memory bandwidth, an efficient memory interface is proposed by utilizing the spatial locality of the memory access in the correction process. The proposed processor is implemented with 35K logic gates in a $0.11-{\mu}m$ CMOS process and its correction speed is 150 Mpixels/s at the operating frequency of 606MHz, where the supported frame size is $2048{\times}2048$ and the required memory bandwidth is 1 read/cycle.

A Study on the Synchronous Signal Detection and Error Correction in Radio Data System (RDS 수신 시스템에서 동기식 신호복원과 에러정정에 관한 연구)

  • 김기근;류흥균
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.8
    • /
    • pp.1-9
    • /
    • 1992
  • Radio data system is a next-generation broadcasting system of digital information communication which multiplexes the digital data into the FM stereo signal in VHF/FM band and provides important and convenient service features. And radio data are composed of groups which are divided into 4 blocks with information word and check word. In this paper, radio data receiver is developed which recovers and process radio data to provide services. Then we confirm that 7dB SNR is required to be 10S0-5TBER of demodulation. Deconding process of shortened-cyclic-decoder has been simulated by computer. Also, the time-compression (by 16 times) method has been adopted for the RDS features post-processing. Via the error probability calculation, simulation and experimentation, the developed receiver system is proved to satisfy the system specification of EBU and implemented by general logic gates and analog circuits.

  • PDF