• Title/Summary/Keyword: diffusion-reaction behavior

Search Result 119, Processing Time 0.027 seconds

Surface Segregation of Hydroniums and Chlorides in a Thick Ice Film at Higher Temperatures

  • Lee, Du Hyeong;Bang, Jaehyeock;Kang, Heon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.263-263
    • /
    • 2013
  • This work examines the dynamic properties of ice surfaces in vacuum for the temperature range of 140~180 K, which extends over the onset temperatures for ice sublimation and the phase transition from amorphous to crystallization ice. In particular, the study focuses on the transport processes of excess protons and chloride ions in ice and their segregative behavior to the ice surface. These phenomena were studied by conducting experiments with a relatively thick (~100 BL) ice film constructed with a bottom $H_2O$ layer and an upper $D_2O$ layer, with excess hydronium and chloride ions trapped at the $H_2O$/$D_2O$ interface as they were generated by the ionization of hydrogen chloride. The migration of protons, chloride ions, and water molecules to the ice film surface and their H/D exchange reactions were measured as a function of temperature using the methods of low energy sputtering (LES) and Cs+ reactive ion scattering (RIS). Temperature programmed desorption (TPD) experiments monitored the desorption of water and hydrogen chloride from the surface. Our observations indicated that both hydronium and chloride ions migrated from the interfacial layer to segregate to the surface at high temperature. Hydrogen chloride gas desorbs via recombination reaction of hydronium and chloride ions floating on the surface. Surface segregation of these species is driven by thermodynamic potential gradient present near the ice surface, whereas in the bulk, their transport is facilitated by thermal diffusion process. The finding suggests that chlorine activation reactions of hydrogen chloride for polar stratospheric ice particles occur at the surface of ice within a depth of at most a few molecular layers, rather than in the bulk phase.

  • PDF

High-Temperature Behavior of Ba-Doped Boehmite Hydrothermally Prepared from $Al(OH)_3$ and $Ba(OH)_2$

  • Fujiyohi, Kaichi;Ishida, Shingo
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.379-385
    • /
    • 1999
  • Minute boehmite crystals with high aspect rations, which were hydrothermally synthesized from gibbsite in $Ba(OH)_2$ solution, occluded Ba with the Ba/Al molar ratio of about 0.03 in their interlayers. Their surface areas were about 14$\m^2$/g. The Ba-intercalated bohemite samples were partly used for producing $BaAl_{12}O){19}$ with low sinterability by externally supplementing $Ba(OH)_2$, and for forming transient aluminas. The surface area of $BaAl_{12}O){19}$ obtained by firing at $1500^{\circ}C$ for 3 h was 5.3$\m^2$/g, which was significantly lower than 12$\m^2$/g of the sol-gel origin. While a mixture ${\gamma}$-alumina and BaO is known to from $BaAl_{12}O){19}$ at $1200^{\circ}C$, solid state reaction between η-alumina transformed from the Ba-intercalated boehmite and BaO formed from $Ba(OH)_2$ deposited on the boehmite started above $1300^{\circ}C$. This suggests that large sized $Ba^{2+}$ ion occluded in η-alumina considerably suppresses the diffusion of $Al^{3+}$ ion. The surface area of the Ba-intercalated boehmite fired at $1400^{\circ}C$ for 3h was as high as 14$\m^2$/g indicative of its potential applicability to combustion catalysts. But it was decreased to 5.0$\m^2$/g after firing at $1500^{\circ}C$ for 3 h, accompanied by abrupt formations of $\alpha$-alumina and $BaAl_{12}O){19}$ as main products. The suppression of $\alpha$-alumina formation up to $1400^{\circ}C$ also suggests the significant blocking effect of $Ba^{2+}$ ion on the diffusion of the component ions.

  • PDF

Study of Ignition Characteristics of CH4/Hot Air Diffusion Flame Using a Flame-Controlling Continuation Method (화염제어 연속계산법을 이용한 CH4-고온공기 확산화염의 점화특성 연구)

  • Song, Keum-Mi;Oh, Chang-Bo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.6
    • /
    • pp.625-632
    • /
    • 2011
  • The ignition characteristics of a $CH_4$/hot air counterflow diffusion flame were investigated numerically using a flame-controlling continuation method. For the chemical reactions, the GRI-v1.2 reaction mechanism was used in the simulation. The maximum flame temperature was presented in the space of the inverse global strain rate, and showed S-curve-type behavior. The flame temperatures and velocities of the upper and middle branches were compared for different global strain rates. In addition, the global strain rate was compared with the local strain rates defined at the flame surface and the boundaries of the fuel and oxidizer sides of the fuel/air mixing layer. These local strain rates correlated well with the global strain rate.

Assessment of Sorption Behavior on Slag Against Heavy Metals (카드뮴, 납, 구리에 대한 슬래그의 흡착특성평가)

  • Lee, Gwang-Hun;Choi, Sung-Dae;Chung, Jae-Shik;Park, Jun-Boum;Nam, Kyoung-Phile
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.6
    • /
    • pp.17-25
    • /
    • 2008
  • Permeable reactive barriers (PRBs) technology can be applied to contaminated groundwater remediation. It is necessary to select adequate reactive material according to contaminant characterization. In groundwater. In this research, the reaction between reactive material and heavy metal contaminants was estimated through batch test. Reactive material was slag, which has been produced in Gwangyang power plant, and heavy metal contaminants were cadmium, lead and copper. Batch test consisted of two testes: 1) sorption equilibrium test and 2) sorption kinetic test. Sorption equilibrium test was performed for estimating slag sorption capacity against contaminants. And sorption kinetic test was performed for slag sorption rate with contaminants species, contaminants initial concentration and sulfate. Sorption capacity and sorption rate were affected by contaminant species. Sorption rate increased with increasing initial concentration in lead and copper but decreased with increasing initial concentration in cadmium. Sorption rate increased in existing sulfate. In low concentration, film diffusion was domain mechanism, and in high concentration, particle diffusion was domain mechanism.

Analysis of the Behavior of Tubular-Type Equipment for Nuclear Waste Treatment : Sensitivities of the Parameters Affecting Mass Transfer Yield (방사성폐기물의 화학처리공정에 사용되는 유동관식 장치의 해석 : 물질전달 수율에 미치는 매개변수들의 민감도)

  • Yoo, Jae-Hyung;Lee, Byung-Jik;Shim, Joon-Bo;Kim, Eung-Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.1
    • /
    • pp.91-99
    • /
    • 2007
  • It was intended in this study to investigate the effects of various parameters on the chemical reaction or mass transfer yield in a tubular-type nuclear waste treatment equipment. Since such equipments, as a tubular reactor, multistage solvent extractor, and adsorption column, accompany chemical reaction or mass transfer along the fluid-flowing direction, mathematical modeling for each equipment was carried out first. Then their behaviors of the chemical reaction or mass transfer were predicted through computer simulations. The inherent major parameters for each equipment were chosen and their sensitivities. affecting the reaction or mass transfer yield were analyzed. For the tubular reactor, the effects of axial diffusion coefficient and reaction rate constant on the reaction yield were investigated. As for the multistage solvent extractor, the backmixing of continuous phase and the distribution coefficient between fluid and solvent were considered as the major parameters affecting the extraction yield as well as concentration profiles throughout the axial direction of the extractor. For the adsorption column, the equilibrium constant between fluid and adsorbent surface, and the overall mass transfer coefficient between the two phases were taken as the major factors that affect the adsorption rate.

  • PDF

Self-Assembled Polymeric Nanoparticles of Poly(ethylene glycol) Grafted Pullulan Acetate as a Novel Drug Carrier

  • Jung, Sun-Woong;Jeong, Young-Il;Kim, Young-Hoon;Kim, Sung-Ho
    • Archives of Pharmacal Research
    • /
    • v.27 no.5
    • /
    • pp.562-569
    • /
    • 2004
  • Self-assembling nanospheres of hydrophobized pullulan have been developed. Pullulan acetate (PA), as hydrophobized pullulan, was synthesized by acetylation. Carboxymethylated poly(ethylene-glycol) (CMPEG) was introduced into pullulan acetate (PA) through a coupling reaction using N, N'-dicyclohexyl carbodiimide (DCC). A synthesized PA-PEG-PA (abbreviated as PEP) conjugate was confirmed by Fourier transform-infrared (FT-IR) spectroscopy. Since PEP conjugates have amphiphilic characteristics in aqueous solution, polymeric nanoparticles of PEP conjugates were prepared using a simple dialysis method in water. From the analysis of fluorescence excitation spectra primarily, the critical association concentration (CAC) of this conjugate was found to be 0.0063 g/L. Observations by scanning electron microscopy (SEM) showed the spherical morphologies of the PEP nanoparticles. The particle size distribution of the PEP conjugates was determined using photon correlation spectroscopy (PCS) and the intensity-average particle size was 193.3 ${\pm}$ 13.53 nm with a unimodal distribution. Clonazepam (CNZ), as a model drug, was easy to entrap into polymeric nanoparticles of the PEP conjugates. The drug release behavior was mainly diffusion controlled from the core portion.

Mass Transfer and Heat Transfer Characteristics of PEM fuel cell by Permeability of GDL (GDL Permeability에 따른 고분자 전해질 연료전지의 물질전달 및 열전달 특성에 관한 연구)

  • Han, Sang-Seok;Lee, Pil-Hyong;Park, Chang-Soo;Lee, Jae-Young;Hwang, Sang-Soon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2822-2827
    • /
    • 2008
  • Among the main components of PEM fuel cell, the functions of GDL are to transport reactants from the channel to the catalyst and remove reaction products from the catalyst and transport heat from the catalyst to the channels in the flow filed plate. Permeability of GDL is known to make it possible to enhance the gas transport through GDL, devoting to get better performance. In this paper, three dimensional numerical simulation of the fuel cell by the permeability of GDL is presented by using a FLUENT modified to include the electrochemical behavior. Results show that as permeability is higher than $10^{-12}m^2$, gradients of temperature distribution, oxygen molar concentration and current density distribution in MEA were decreased. Although heat generation was increased as high permeability, MEA's temperature was lower than the low permeability of GDL. This seems because that convection was higher affects in mass and heat transfer process than diffusion as permeability of GDL is increases.

  • PDF

Surface Treatment of Mg95Zn4.3Y0.7 Alloy Powder Consolidates using Plasma Electrolytic Oxidation (플라즈마 전해산화공정을 이용한 Mg95Zn4.3Y0.7 합금분말 성형체의 표면특성제어)

  • Kim, J.H.;Choi, H.S.;Kim, D.H.;Hwang, D.Y.;Kim, H.S.;Kim, T.S.
    • Journal of Powder Materials
    • /
    • v.15 no.2
    • /
    • pp.95-100
    • /
    • 2008
  • The investigation is to modify the mechanical and chemical properties of Mg alloys using a combination of rapid solidification and surface treatment. As the first approach, $Mg_{95}Zn_{4.3}Y_{0.7}$ was gas atomized and pressure sintered by spark plasma sintering process (SPS), showing much finer microstructure and higher strength than the alloys as cast. Further modification was performed by treating the surface of PM Mg specimen using Plasma electrolytic oxidation (PEO) process. During the PEO processing, MgO layer was initiated to form on the surface of Mg powder compacts, and the thickness and the density of MgO layer were varied with the reaction time. The thickening rate became low with the reaction time due to the limited diffusion rate of Mg ions. The surface morphology, corrosion behavior and wear resistance were also discussed.

DEVELOPMENT OF SN BASED MULTI COMPONENT SOLDER BALLS WITH CD CORE FOR BGA PACKAGE

  • Sakatani, Shigeaki;Kohara, Yasuhiro;Uenishi, Keisuke;Kobayashi, Kojiro F.;Yamamoto, Masaharu
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.450-455
    • /
    • 2002
  • Cu-cored Sn-Ag solder balls were fabricated by coating pure Sn and Ag on Cu balls. The melting behavior and the solderability of the BGA joint with the Ni/Au coated Cu pad were investigated and were compared with those of the commercial Sn-Ag and Sn-Ag-Cu balls. DSC analyses clarified the melting of Cu-cored solders to start at a rather low temperature, the eutectic temperature of Sn-Ag-Cu. It was ascribed to the diffusion of Cu and Ag into Sn plating during the heating process. After reflow soldering the microstructures of the solder and of the interfacial layer between the solder and the Cu pad were analyzed with SEM and EPMA. By EDX analysis, formation of a eutectic microstructure composing of $\beta$-Sn, Ag$_3$Sn, ad Cu$_{6}$Sn$_{5}$ phases was confirmed in the solder, and the η'-(Au, Co, Cu, Ni)$_{6}$Sn$_{5}$ reaction layer was found to form at the interface between the solder and the Cu pad. By conducting shear tests, it was found that the BGA joint using Cu-cored solder ball could prevent the degradation of joint strength during aging at 423K because of the slower growth me of η'-(Au, Co, Cu, Ni)$_{6}$Sn$_{5}$ reaction layer formed at the solder, pad interface. Furthermore, Cu-cored multi-component Sn-Ag-Bi balls were fabricated by sequentially coating the binary Sn-Ag and Sn-Bi solders on Cu balls. The reflow property of these solder balls was investigated. Melting of these solder balls was clarified to start at the almost same temperature as that of Sn-2Ag-0.75Cu-3Bi solder. A microstructure composing of (Sn), Ag$_3$Sn, Bi and Cu$_{6}$Sn$_{5}$ phases was found to form in the solder ball, and a reaction layer containing primarily η'-(Au, Co, Cu, Ni)$_{6}$Sn$_{5}$ was found at the interface with Ni/Au coated Cu pad after reflow soldering. By conducting shear test, it was found that the BGA joints using this Cu-core solder balls hardly degraded their joint shear strength during aging at 423K due to the slower growth rate of the η'-(Au, Cu, Ni)$_{6}$Sn$_{5}$ reaction layer at the solder/pad interface.he solder/pad interface.

  • PDF

Unsteady Mass Transfer Around Single Droplet Accompanied by Interfacial Extraction Reaction of Succinic Acid (숙신산 추출반응이 일어나는 단일 액적계에서의 비정상상태 물질 전달)

  • Jeon, Sangjun;Hong, Won Hi
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1021-1026
    • /
    • 2012
  • The transient mass transfer in a single droplet system consisting of 1-octanol (continuous phase)/aqueous succinic acid solution (dispersed phase) was investigated in the presence of chemical reaction, which is acid/anion exchange reaction of succinic acid and tri-n-octylamine (TOA). This succinic acid extraction by TOA can be considered to occur at the interface between organic and aqueous phase, that is, heterogeneous reaction system. The basic properties of the system such as viscosity, density, distribution coefficient, terminal velocity of droplet, and diffusion coefficient were measured experimentally or calculated theoretically, and used for theoretical calculation of characteristic parameters of mass transfer later. The effects of succinic acid concentration on the terminal velocity was negligible in the existence of TOA, although the terminal velocity increases with succinic acid concentration in the absence of TOA. On the contrary, the terminal velocity decreases with TOA concentration. While droplets falls through organic phase, the trajectory of droplets is observed to oscillate around its vertical path. A mass trnasfer cell was prepared to monitor the mass transfer behavior in a single droplet and used to measure the mean concentration of succinic acid inside droplet. The results are expressed with dimensionless parameters. Under 50 g/L succinic acid condition, the system with 0.1 mol/kg TOA showed that the molar flux decreases in proportion to the decrease of concentration gradient, while in the case of 0.5 mol/kg TOA Sh increases rapidly with time indicating the molar flux of succinic acid decreases relatively slowly compared to the decrease in concentration gradient.