• Title/Summary/Keyword: diffusion motion

Search Result 150, Processing Time 0.021 seconds

Redistribution of Passive Impurity by Long Waves in Coastal Zone (연안역에서의 장파에 의한 오염원 확산)

  • Ivanov, Vitaly;Pelinovsky, Efim;Talipova, Tatjana
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.3
    • /
    • pp.232-239
    • /
    • 1993
  • In this paper the effect of wave motion acting on the natural folds of dispersed material in the coastal zone is studied. After integrating the usual diffusion equation with respect to the depth using shallow-water approximation simpler equation for integrated concentration was obtained. which holds for long waves of arbitrary amplitude and far any arbitrary barotropic flows. Different situations of long wave action on impurity concentration in the frame of this equation are considered.

  • PDF

Electron Transport Characteristics in $SiH_4$ by MCS-BEq (MCS-BEq에 의한 $SiH_4$ 전자수송특성(電子輸送特性))

  • Seong, Nak-Jin;Kim, Sang-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2005.10a
    • /
    • pp.97-100
    • /
    • 2005
  • This paper describes the electron transport characteristics in SiH4 has been analysed over the E/N range 0.5${\sim}$300[Td] and Pressure value 0.5, 1, 2.5 [Torr] by a two-term approximation Boltzmann equation method and by a Monte Carlo simulation. The motion has been calculated to give swarm parameters for the electron drift velocity, diffusion coefficient, electron ionization, mean energy and the electron energy distribution function. The electron energy distribution function has been analysed in $SiH_4$ at E/N=30, 50[Td] for a case of the equilibrium region in the mean electron energy and respective set of electron collision cross sections. The results of Boltzmann equation and Monte carlo simulation have been compared with experimental data by Pollock, Ohmori, cottrell and Walker.

  • PDF

The Analysis of the Electron Drift Velocity and Characteristics Energy in $SiH_4$ Plasma gas by Electron Swarm method (전자 Swarm법에 의한 $SiH_4$ 플라즈마의 전자이동속도 및 특성에너지 해석)

  • 이형윤;백승권;하성철
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.12 no.1
    • /
    • pp.88-93
    • /
    • 1999
  • This paper describes the electron transport characteristics in $SiH_4$ gas calculated for the range of E/n:0.5~300(Td) and Pressure:0.5, 1, 2.5(Torr) by the Monte carlo simulation and Boltzmann equation method using a set of electron collision cross sections determined by the reported results. The motion has been calculated to give swarm parameters for the electron drift velocity, longitudinal and transverse diffusion coefficients, the electron ionization coefficients, characteristics energy and the electron energy distribution function. The electron energy distributions function has been analysed in $SiH_4$ at E/N: 30, 50(Td)for a case of the equilibrium region in the mean electron energy and respective set of electron collision cross sections. The results of Monte carlo simulation and Boltzmann equation have been compared with experimental data by ohmori ad Pollock.

  • PDF

Investigation of hyperbolic dynamic response in concrete pipes with two-phase flow

  • Zheng, Chuanzhang;Yan, Gongxing;Khadimallah, Mohamed Amiine;Nouri, Alireza Zamani;Behshad, Amir
    • Advances in concrete construction
    • /
    • v.13 no.5
    • /
    • pp.361-365
    • /
    • 2022
  • The objective of this study is to simulate the two-phase flow in pipes with various two-fluid models and determinate the shear stress. A hyperbolic shear deformation theory is used for modelling of the pipe. Two-fluid models are solved by using the conservative shock capturing method. Energy relations are used for deriving the motion equations. When the initial conditions of problem satisfied the Kelvin Helmholtz instability conditions, the free-pressure two-fluid model could accurately predict discontinuities in the solution field. A numerical solution is applied for computing the shear stress. The two-pressure two-fluid model produces more numerical diffusion compared to the free-pressure two-fluid and single-pressure two-fluid models. Results show that with increasing the two-phase percent, the shear stress is reduced.

Correlation of the Speed of Enhancement of Hepatic Hemangiomas with Intravoxel Incoherent Motion MR Imaging (간혈관종의 조영증강속도와 복셀내비결집운동 MR영상과의 상관관계)

  • Yang, Dal Mo;Jahng, Geon-Ho;Kim, Hyun Cheol;Kim, Sang Won;Kim, Hyug-Gi
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.3
    • /
    • pp.208-218
    • /
    • 2014
  • Purpose : To evaluate the relationship between the speed of enhancement of hepatic hemangiomas on gadolinium-enhanced MRI and ADC values by using various parameters, including the D, f, $D^*$ and $ADC_{fit}$ on intravoxel incoherent motion (IVIM) MR Imaging. Materials and Methods: The institutional review board approved this retrospective study. A total of 47 hepatic hemangiomas from 39 patients were included (20 men and 19 women). The hemangiomas were classified into three types according to the enhancement speed of the hepatic hemangiomas on gadolinium-enhanced dynamic T1-weighted images: rapid (Type A), intermediate (Type B), and slow (Type C) enhancement. The D, f, $D^*$ and $ADC_{fit}$ values were calculated using IVIM MR imaging. The diffusion/perfusion parameters and ADC values were compared among the three types of hemangiomas. Results: Both the $ADC_{fit}$ and D values of type C were significantly lower than those of type A (P = 0.0022, P = 0.0085). However, for the f and $D^*$, there were no significant differences among the three types. On DWI with all b values (50, 200, 500 and $800sec/mm^2$), the ADC values of type C were significantly lower than those of the type A (P < 0.012). For b values with $800sec/mm^2$, the $ADC_{800}$ values of the type C hemangiomas were significantly lower than those of type B (P = 0.0021). We found a negative correlation between hepatic hemangioma enhancement type and $ADC_{50}$ (${\rho}=-0.357$, P = 0.014), $ADC_{200}$ (${\rho}=-0.537$, P = 0.0001), $ADC_{500}$ (${\rho}=-0.614$, P = 0.0001), and $ADC_{800}$ (${\rho}=-0.607$, P = 0.0001). Therefore, four ADC values of $ADC_{50}$, $ADC_{200}$, $ADC_{500}$, and $ADC_{800}$ were decreased with decreasing enhancement speed. Conclusion: Hepatic hemangiomas had variable ADCs according to the type of enhancement, and the reduced ADCs in slowly enhancing hemangiomas may be related to the reduced pure molecular diffusion (D).

Evaluation of Renal Pathophysiological Processes Induced by an Iodinated Contrast Agent in a Diabetic Rabbit Model Using Intravoxel Incoherent Motion and Blood Oxygenation Level-Dependent Magnetic Resonance Imaging

  • Yongfang Wang;Xin Zhang;Bin Wang;Yang Xie;Yi Wang;Xuan Jiang;Rongjia Wang;Ke Ren
    • Korean Journal of Radiology
    • /
    • v.20 no.5
    • /
    • pp.830-843
    • /
    • 2019
  • Objective: To examine the potential of intravoxel incoherent motion (IVIM) and blood oxygen level-dependent (BOLD) magnetic resonance imaging for detecting renal changes after iodinated contrast-induced acute kidney injury (CI-AKI) development in a diabetic rabbit model. Materials and Methods: Sixty-two rabbits were randomized into 2 groups: diabetic rabbits with the contrast agent (DCA) and healthy rabbits with the contrast agent (NCA). In each group, 6 rabbits underwent IVIM and BOLD imaging at 1 hour, 1 day, 2 days, 3 days, and 4 days after an iohexol injection while 5 rabbits were selected to undergo blood and histological examinations at these specific time points. Iohexol was administrated at a dose of 2.5 g I/kg of body weight. Further, the apparent transverse relaxation rate (R2*), average pure molecular diffusion coefficient (D), pseudo-diffusion coefficient (D*), perfusion fraction (f) were calculated. Results: The D and f values of the renal cortex (CO) and outer medulla (OM) were significantly decreased compared to baseline values in the 2 groups 1 day after the iohexol injection (p < 0.05). A marked reduction in the D* values for both the CO and OM was also observed after 1 hour in each group (p < 0.05). In the OM, a persistent elevation of the R2* was detected for 4 days in the DCA group (p < 0.05). Histopathological changes were prominent, and the pathological features of CI-AKI aggravated in the DCA group until day 4. The D, f, and R2* values significantly correlated with the histological damage scores, hypoxia-inducible transcription factor-1α expression scores, and serum creatinine levels. Conclusion: A combination of IVIM and BOLD imaging may serve as a noninvasive method for detecting and monitoring CI-AKI in the early stages in the diabetic kidney.

The Role of Fronts on the Vertical Transport of Atmospheric Pollutants II: Vertical transport experiment using MM5 (대기오염물질의 연직 수송에 미치는 전선의 역할 II: MM5를 이용한 3차원 연직 수송 실험)

  • Nam, Jae-Cheol;Hwang, Seung-On;Park, Soon-Ung
    • Atmosphere
    • /
    • v.14 no.4
    • /
    • pp.3-18
    • /
    • 2004
  • Neglecting the vertical transport from the surface, most of the previous studies on the long-range transport of pollutants have only considered the horizontal transport caused by the free atmosphere wind. I used a three dimensional numerical model, MM5 (The fifth generation Penn State Univ./NCAR Mesoscale Model) for the simulation of vertical transport of pollutants and investigated the mechanism of the vertical transport of atmospheric pollutants between planetary boundary layer(PBL) and free atmosphere by fronts. From the three dimensional simulation of MM5, the amount of pollutants transport from PBL to free atmosphere is 48% within 18 hour after the development of front, 55% within 24 hour, and 53% within 30 hour. The ratios of the vertically transported pollutant for different seasons are 62%, 60%, 54%, and 43% for spring, summer, fall, and winter, respectively. The most active areas for the vertical transport are the center of low pressure and the warm sector located east side of cold front, in which the strong upward motion slanted northward occurs. The horizontal advection of pollutants at the upper level is stronger than at the lower level simply because of the stronger wind speed. The simulation results shows the well known plum shape distribution of pollutants. The high concentration area is located in the center and north of the low pressure system, while the second highest concentration area is in the warm sector. It is shown that the most important mechanism for the vertical transport is vertical advection, while the vertical diffusion process plays an important role in the redistribution of pollutants in the PBL.

The Study on the Development of Ozone Water Diffusion Device by Ozonated Olive Oil Mix Ratio that will Increase (올리브 오일의 오존화 혼합비율을 높여주는 오존수 확산장치개발에 관한 연구)

  • Kim, Duck-Sool
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.688-693
    • /
    • 2014
  • This study is to increase the utilization of the ozonated water generator to make it easier to take advantage of the ozone water in the world today, there will be to develop a system that operates in one motion. Furthermore, olive oil and ozone is reacted with the wish to apply to the manufacturing technology. In the case of many existing products ozone generator driven mostly non-ozone system. In the case of ozone, but handwriting is implied general way pressure ozone gas leakage risks of suction force to the pump, it is the case of the challenge by using the injector, and limit the generation of ozone and ozone inhalation according to whether the water inlet leakage of existing products risk due to minimized. Despite the disadvantages of the injector system was found the effectiveness of the ozonated water production unit injector system used in this study to maintain the microbiological disinfection performance.

Development of Long-Range Atmospheric Dispersion Model against a Nuclear Accident (원전 사고를 대비한 장거리 대기 확산모델 개발)

  • Suh, Kyung-Suk;Kim, Eun-Han;Han, Moon-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.3
    • /
    • pp.171-179
    • /
    • 2002
  • The three-dimensional long-range dispersion model has been developed to understand the characteristics of the transport and diffusion of radioactive materials released into atmosphere. The model is designed to compute air concentration and ground deposition at distances up to some thousands of kilometers from the source point in horizontal direction. The vertical turbulent motion is considered separately within the mixing layer and above the mixing layer. The test simulation was performed In the area of Northeast Asia. The release point was assumed in the east part of China. The calculated concentration distributions art mainly advected toward the southeast part of release point by the wind fields. The developed model will be used to estimate the radiological consequences against a nuclear accident. The model will be supplemented by the comparative study using the data of the long-range field experiments.

Influence of piston bowl geometry on the in-cylinder flow of HCCI Engine (HCCI 엔진의 실린더 내 유동에 대한 피스톤 보울 형상의 영향)

  • Nam, Seung Man;Lee, Kye Bock
    • Journal of Energy Engineering
    • /
    • v.22 no.4
    • /
    • pp.399-405
    • /
    • 2013
  • The gas motion inside the engine cylinder plays a very important role in determining the thermal efficiency of an internal combustion engine. A precise information of in-cylinder three dimensional complex gas motion is crucial in optimizing engine design. Homogeneous charge compression ignition (HCCI) engine is a combustion concept, which is a hybrid between Otto and Diesel engine. The turbulent diffusion leads to increased rates of momentum, heat and mass transfer. The in-cylinder turbulence flow was found to affect the present HCCI combustion mainly through its influence on the wall heat transfer. This study investigates the effect of piston geometry shape on the turbulent flow characteristics of in-cylinder from the numerical analysis using the LES model and the results obtained can offer guidelines of the combustion geometries for better combustion process and engine performance.