• Title/Summary/Keyword: diffuser effect

Search Result 145, Processing Time 0.028 seconds

On the Effect and Design of Diffusing Aerator for Thermal De-stratification (산기장치를 이응한 호수의 성층파괴효과와 설계)

  • Song Museok;Seo Dongil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.5 no.3
    • /
    • pp.16-22
    • /
    • 2002
  • The effect and the overall optimal operation of artificial aeration devices for mixing of thermally stratified water reservoir are under study, and its brief introduction is made. The study site is Yeoncho Lake in Geojae island, which is well known for its eutrophication problems in the summer. A few samplings have been made before and after the operation of two types of artificial aerators, and the effect is believed to be positive. Also, design methodology for such artificial aerators is reviewed and a few are applied to the case of Yeoncho Lake. Schladow's[1993] proposal is believed most proper based on the information we have gathered by now. In addition, a simple numerical experiment is also peformed to see the overall effect of the device on the flow and temperature profile.

  • PDF

Effect of the Application of a Suspended and a Mixing-in-Pipe Type Aerator on the Liquid Fertilization of Pig Manure Slurry (현수, 배관 내 혼합 폭기방식 적용이 돼지분뇨 슬러리의 액상 비료화에 미치는 영향)

  • Jeong, Kwang Hwa;Kim, Jung-Kon;Khan, Modabber Ahmed;Kwag, Jung-Hoon;Han, Duk-Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.4
    • /
    • pp.62-71
    • /
    • 2014
  • Three types of diffuser systems were manufactured and applied to investigate the effect of liquid fertilization of pig manure slurry by application of aeration processes. In the first type reactor, commonly used diffuser system, which diffuse air upward by diffusing aerator fixed at the bottom of the reactor is installed. In case of the second type, air diffuser is installed 10 cm above of the bottom of a reactor. In the third type reactor, the venturi-type air diffuser is installed at circulation pipe, which return pig slurry in the reactor(mixing-in-pipe process). The pig manure slurry separated to solid/liquid was flowed into the experimental reactor, and left as it for one week to precipitate solids. The concentration of organic matter, T-N, T-P and BOD in the raw pig manure slurry flowed into the reactor of bottom-fixed type aeration process were 1.82%, 4,400 mg/L, 360 mg/L and 13,542 mg/L, respectively. After aeration the concentration of organic matters, T-N, T-P and BOD in the slurry were 2.01%, 4,400 mg/L, 420 mg/L and 16,824 mg/L, respectively. The concentration of organic matter, T-N, T-P and BOD in the mixing-in-pipe type changed from 1.58%, 3,700 mg/L, 260 mg/L and 15,735 mg/L to 1.96%, 4,000 mg/L, 340 mg/L, and 18,098 mg/L, respectively. Changes of the concentration of organic matter, T-N, T-P and BOD of the pig manure slurry collected from the middle layers of two aeration reactors; bottom aeration process and the mixing-in-pipe process, were 10.4%, 0%, 16.7% and 24.2% and 24.0%, 8.1%, 30.8% and 15.0%, respectively. The thickness of foam layer generated on the surface of pig manure slurry in aeration tank was thinner in mixing-in-pipe reactor than bottom-fixed type aeration reactor.

Effect of Air Velocity on Combustion Characteristics in Small-Scale Burner

  • Laryea, Gabriel Nii;No, Soo-Young
    • Journal of the Korean Society of Combustion
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • This paper presents the combustion characteristics of hydrocarbon fuel from a conventional pressure-swirl nozzle of a small-scale burner. The nozzle has orifice diameters of 0.256 mm and liquid flow rates ranging from 50 to 64 mL/min were selected for the experiments. The furnace temperature distribution along the axial distance, the gas emission such as CO, $CO_2$, NOx, $SO_2$, flue gas temperature, and combustion efficiency were studied. The local furnace and flue gas temperatures decreased with an increase in air velocity. At injection pressures of 1.1 and 1.3 MPa the maximum furnace temperatures occurred closer to the burner exit, at an axial distance of 242 mm from the diffuser tip. The CO and $CO_2$concentrations decreased with an increase in air velocity, but they increased with an increase in injection pressure. The effect of air velocity on NOx was not clearly seen at low injection pressures, but at injection pressure of 1.3 MPa it decreased with an increase in air velocity. The effect of air velocity on $SO_2$ concentration level is not well understood. The combustion efficiency decreased with an increase in air velocity but it increased with an increase in injection pressure. It is recommended that injection pressure less than 0.9 MPa with air velocity not above 8.0 m/s would be suitable for this burner.

  • PDF

Effect of Air Velocity on Combustion Characteristics Scale Burner

  • Laryea, Gabriel Nii;No, Soo-Young
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • v.10 no.1
    • /
    • pp.76-82
    • /
    • 2005
  • This paper presents the combustion characteristics of hydrocarbon fuel from a conventional pressureswirl nozzle of a small-scale burner. The nozzle has orifice diameters of 0.256 mm and liquid flow rates raging from 50 to 64 mL/min were selected for the experiments. The furnace temperature distribution along the axial distance, the gas emission such as CO, $CO_2,\;NOx,\;S0_2,$ flue gas temperature, and combustion efficiency were studied. The local furnace and flue gas temperatures decreased with an increase in air velocity. At injection pressures of 1.1 and 1.3 MPa the maximum furnace temperatures occurred closer to the burner exit, at an axial distance of 242 mm from the diffuser tip. The CO and $CO_2$ concentrations decreased with an increase in air velocity, but they increased with an increase in injection pressure. The effect of air velocity on NOx was not clearly seen at low injection pressures, but at injection pressure of 1.3 MPa it decreased with an increase in air velocity. The effect of air velocity $SO_2$ concentration level is not well understood. The combustion efficiency decreased with an increase in air velocity but it increased with an increase in injection pressure. It is recommended that injection pressure less than 0.9 MPa with air velocity not above 8.0 m/s would be suitable for this burner.

  • PDF

A Study on the Static mixer and Microbubble of the Sidestream Ozone Contact System to Improve Water Treatment Efficiency (사이드스트림 오존 접촉조에서 수처리 효율 향상을 위한 정적혼합기와 미세기포에 관한 연구)

  • Kim, Jin-Hoon;Park, Jong-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.6
    • /
    • pp.763-768
    • /
    • 2009
  • Ozone is a strong oxidant and a powerful disinfectant. In general, it has been used in drinking water treatment during last 100years. Ozone dissolution features are defined by the two categories of ozone contactors, bubble-diffuser and sidestream ozone contactor. Currently, sidestream-injection systems are gaining in popularity but operating cost might be slightly higher. Sidestream ozone system dissolve ozone into a sidestream flow via an injection setup or in the main process flow stream in some sidestream arrangements. The sidestream flow is subsequently mixed with the main process flow stream, which is directed to a reation tank or pipeline for oxidation and disinfection reactions. The purpose of this study is to suggest optimal operating pressure, to figure out the static-mixer effect and to understand the microbubble characteristics of ozone to improve dissolution efficiency.

Positive Research About Water Aeration Improvement to Break Thermal Stratification of Dam (댐내 수온성층 파괴를 위한 산기식 수중폭기설비 성능향상 실증연구)

  • Park, Jong-Ho;Ra, Beyong-Pil
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.5
    • /
    • pp.37-42
    • /
    • 2014
  • In Korea while the dam or reservoir is an important water resource, the value of this water resource is deteriorating by thermal-induced stratification. To ameliorate the water quality of reservoir by breaking stratification the use of air diffuser system is now widespread in Korea. According to the previous research, dynamics of bubble plume and destratification efficiency depended upon two dimensionless groupings; Mh and Pn suggested by Asaeda et al (1993). However, these two variables only include Q, N, H, g, u. and installed Boryeong reservior in appropriate width of water aeration, air dose and number of installations after calculating by applying these figures. This paper is performed to find out effect analysis about water aeration improvement to break thermal stratification.

Thermal Comfort of the Floor Supply Air Conditioning System for Different Supply-return Locations during Cooling (급배기 위치에 따른 바닥급기 공조시스템의 냉방 열환경)

  • 김요셉;김영일;유호선
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.5
    • /
    • pp.476-485
    • /
    • 2000
  • This study numerically investigates thermal comfort in a space cooled by the floor-supply air conditioning system, in which three different supply-return locations, one floor supply-ceiling return and two floor supply-floor returns, are treated. A complementary experiment is peformed to validate the present numerical analysis, and the prediction agrees favorably with the measured data. In the numerical procedure, a simplified model mimicking the inlet flow through the diffuser is developed for efficient simulations. The calculated results show that the ceiling return type is far better in thermal comfort than the floor return ones within the extent of this study, which seems to be caused by effective vertical penetration of the supply air against natural convection. It is also revealed that the arrangement of port locations in the floor supply-floor return system has insignificant effect on the cooling performance. For selecting a proper system, other characteristics including the heating performance should be accounted for simultaneously with the present estimation.

  • PDF

Evaluation of the Scattered Sound Field using Temporal Diffusion (Temporal diffusion'을 활용한 확산음장 평가)

  • Jeon, Jin-Yong;Sato, Shin-ichi
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.666-670
    • /
    • 2006
  • It has been considered that scattered sounds have a positive effect on a hearing impression of a sound filed. This study investigates the degree and the quality of a scattered sound field by using the acoustical parameters and autocorrelation function(ACF) of impulse responses. The acoustical parameters and fine structure of the ACF of an impulse response were used for the evaluation of the scattered sound field. The relationship between the scattering coefficient of surfaces with various hemisphere diffuser configurations and the acoustical parameters and ACF parameters of impulse responses was investigated.

  • PDF

Study on the noise reduction occurred to rotation in duct (덕트 회전체에서 발생하는 소음저감에 대한 연구)

  • Park, Hong-Ul;Kim, You-Jae;Park, Sung-Kwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.875-879
    • /
    • 2006
  • Noise reduction has become a major issue of the duct air-conditioners. This paper describes the reduction of noise and vibration of rotational slim duct system. The design of slim duct system is the most important point of noise reduction in terms of the motor of 2f line noise, resonance noise between forced frequency and natural frequency of Sirocco fan, unbalance noise of motor axis and the noise induced refrigerant. The noise of duct system is mainly measured from diffuser and bottom of duct. The optimal design was implemented after measuring the effect of noise and vibration in each part which is composed of duct system. In this paper, experimental results show that the main elements in air-conditioner duct design. These elements are anti-vibration rubber of motor, axis length of motor, rubber coupler, materials of sirocco fan and control method of motor which are the most vital factors in reducing noise.

  • PDF

Modification of Dissipation Rate Equation of Low Reynolds Number k-ε Model Accounting for Adverse Pressure Gradient Effect (역압력구배 영향을 고려한 저레이놀즈수 k-ε 모형의 소산율 방정식 수정)

  • Song, Kyoung;Cho, Kang Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1399-1409
    • /
    • 1999
  • It is known that previous models are unsatisfactory in predicting adverse pressure gradient turbulent flows. In the present paper, a revised low Reynolds number $k-{\varepsilon}$ model is proposed. In this model, a newly developed term is added lo the dissipation rate equation. In order to reflect appropriate effects for an adverse pressure gradient. The added tenn is derived by considering the distribution of mean velocity and turbulent properties in the turbulent flow with, adverse pressure gradient. The new $k-{\varepsilon}$ model was applied to calculations of flat plate flow with adverse pressure gradient, conical diffuser flow and backward facing step flow. It was found that the three numerical results showed better agreement than other models compared with DNS results and experimental ones.