• Title/Summary/Keyword: diffraction parameter

Search Result 191, Processing Time 0.056 seconds

Effect of Deposition Parameter and Mixing Process of Raw Materials on the Phase and Structure of Ytterbium Silicate Environmental Barrier Coatings by Suspension Plasma Spray Method (서스펜션 플라즈마 스프레이 코팅법으로 제조된 Ytterbium Silicate 환경차폐코팅의 상형성 및 구조에 미치는 증착인자 및 원료혼합 공정의 영향)

  • Ryu, Ho-lim;Choi, Seon-A;Lee, Sung-Min;Han, Yoon-Soo;Choi, Kyun;Nahm, Sahn;Oh, Yoon-Suk
    • Journal of Powder Materials
    • /
    • v.24 no.6
    • /
    • pp.437-443
    • /
    • 2017
  • SiC-based composite materials with light weight, high durability, and high-temperature stability have been actively studied for use in aerospace and defense applications. Moreover, environmental barrier coating (EBC) technologies using oxide-based ceramic materials have been studied to prevent chemical deterioration at a high temperature of $1300^{\circ}C$ or higher. In this study, an ytterbium silicate material, which has recently been actively studied as an environmental barrier coating because of its high-temperature chemical stability, is fabricated on a sintered SiC substrate. $Yb_2O_3$ and $SiO_2$ are used as the raw starting materials to form ytterbium disilicate ($Yb_2Si_2O_7$). Suspension plasma spraying is applied as the coating method. The effect of the mixing method on the particle size and distribution, which affect the coating formation behavior, is investigated using a scanning electron microscope (SEM), an energy dispersive spectrometer (EDS), and X-ray diffraction (XRD) analysis. It is found that the originally designed compounds are not effectively formed because of the refinement and vaporization of the raw material particles, i.e., $SiO_2$, and the formation of a porous coating structure. By changing the coating parameters such as the deposition distance, it is found that a denser coating structure can be formed at a closer deposition distance.

A Study on Magnetic Properties of $Ni_{1-x}Zn_{x}Fe_{2}O_{4}(0{\leq}x{\leq}1)$ Ferrrite ($Ni_{1-x}Zn_{x}Fe_{2}O_{4}(0{\leq}x{\leq}1)$ Ferrrite의 자기적 성질 연구)

  • 조익한;양재석;김응찬;강신규
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.6
    • /
    • pp.397-404
    • /
    • 1996
  • The magnetic properties of $Ni_{1-x}Zn_{x}Fe_{2}O_{4}$ have been studied by X-ray diffractometry and $M\"{o}ssbauer$ Spectroscopy at room temperature. The X-ray diffraction study show that spinel structure is formed in all x, lattice constants linearly increased from $8.3111{$\AA$}~8.4184{$\AA$}({\pm}0.0003)$ with increasing x from 0 to 1, and oxygen parameter increase with increasing x. $M\"{o}ssbauer$ spectrum shows that $Ni_{1-x}Zn_{x}Fe_{2}O_{4}(x=0)$ has two antiparallel magnetic structure due to $Fe^{3+}$ octahedral site and $Fe^{3+}$ tetrahedral site. $Ni_{1-x}Zn_{x}Fe_{2}O_{4}$ with $0.2{\leq}x{\leq}0.6$ has magnetic structure of Yafet and Kittel, in particularly, specimen with x=0.6 shows relaxation effect. Specimen with $x{\geq}0.8$ show paramagnetic quadrupole splitting. The isomer shift is independent of x, but quadrupole splittings decrease with increasing x in the range of $0.8{\leq}x{\leq}1$, and nuclear magnetic fields decrease with in¬creasing x in the range of $0{\leq}x{\leq}0.6$. The magnetic properties of $Ni_{1-x}Zn_{x}Fe_{2}O_{4}$ change from ferrimagnetics to pararnagnetics with increasing x.

  • PDF

Development of Biomass-Derived Anode Material for Lithium-Ion Battery (리튬이온 전지용 바이오매스 기반 음극재 개발)

  • Jeong, Jae Yoon;Lee, Dong Jun;Heo, Jungwon;Lim, Du-Hyun;Seo, Yang-Gon;Ahn, Jou-Hyeon;Choi, Chang-Ho
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.131-136
    • /
    • 2020
  • Biomass bamboo charcoal is utilized as anode for lithium-ion battery in an effort to find an alternative to conventional resources such as cokes and petroleum pitches. The amorphous phase of the bamboo charcoal is partially converted to graphite through a low temperature graphitization process with iron oxide nanoparticle catalyst impregnated into the bamboo charcoal. An optimum catalysis amount for the graphitization is determined based on the characterization results of TEM, Raman spectroscopy, and XRD. It is found that the graphitization occurs surrounding the surface of the catalysis, and large pores are formed after the removal of the catalysis. The formation of the large pores increases the pore volume and, as a result, reduces the surface area of the graphitized bamboo charcoal. The partial graphitization of the pristine bamboo charcoal improves the discharge capacity and coulombic efficiency compared to the pristine counterpart. However, the discharge capacity of the graphitized charcoal at elevated current density is decreased due to the reduced surface area. These results indicate that the size of the catalysis formed in in-situ graphitization is a critical parameter to determine the battery performance and thus should be tuned as small as one of the pristine charcoal to retain the surface area and eventually improve the discharge capacity at high current density.

The Study on Thermal Analysis and Thermodynamic Characteristics of Spinel Compounds(ZnCo2O4, NiCo2O4) (스피넬 구조를 가지는 전이금속화합물(ZnCo2O4, NiCo2O4)의 열적 분석 및 열역학적 특성 연구)

  • Kim, Jae-Uk;Ji, Myoung-Jin;Cha, Byung-Kwan;Kim, Chul-Hyun;Jang, Won-Cheoul;Kim, Jong-Gyu
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.2
    • /
    • pp.192-197
    • /
    • 2010
  • The spinel compound was obtained by the thermal decomposition of Zn-Co and Zn-Ni gel prepared by sol-gel method using oxalic acid as a chelating agent. The formation of spinel compound has been comfirmed by thermogravimetric analysis (TGA), x-ray powder diffraction (XRD) and infrared spectroscopy (IR). The particle size of 13 nm~16 nm was calculated by Scherrer's equation. The sol-gel method provides a practicable and effective route for the synthesis of the spinel compound at low temperature ($350^{\circ}C$). The kinetic parameters such as activation energy (Ea) and pre-exponential factor (A) for each compound were found by means of the Kissinger method and Arrhenius equation. The decomposition of spinel compound has an activation energy about 155 kJ/mol. Finally, the thermodynamic parameters (${\Delta}G^{\varphi}$, ${\Delta}H^{\varphi}$, ${\Delta}S^{\varphi}$) for decomposition of spinel compound was determined.

X-ray Powder Diffraction Structural Phase-transition Study of $(Na_{0.7}Sr_{0.3})(Ti_{0.3}Nb_{0.7})O_3$using the Rietveld Method of Analysis (분말 X-선 회절의 리트벨트 해석법을 이용한 $(Na_{0.7}Sr_{0.3})(Ti_{0.3}Nb_{0.7})O_3$계에서의 구조 상전이 특성연구)

  • Jeong, Hun-Taek;Kim, Ho-Gi
    • Korean Journal of Materials Research
    • /
    • v.5 no.6
    • /
    • pp.748-753
    • /
    • 1995
  • Solid solution of NaNb $O_3$70 mol% and SrTi $O_3$30 mol% was single phase. A broad dielectric peak was found at about l00K. Crystal structure was analysed at room temperature and 12K using Rietveld analysis. The unit cell was assigned to have a a doubled lattice parameter of simple perovskite sturcture at room temperatue, the structure was orthorombic with space group Pmmn. At 12K, the structure was also orthorombic with space group Pnma. This structure change with temperature was due to the distortion of oxygen octahedron. This distortion of oxygen octahedron was made by the decrease of (Ti, Nb)-O bounds length with no variation of (Ti, Nb)-O-(Ti, Nb) bound angle. Therefore the broad dielectirc peak about l00K was attributed to the structural change casued by oxygen octahedron distortion.

  • PDF

Synthesis and Electrochemical Properties of Zn and Al added LiNi0.85Co0.15O2 Cathode Materials (Zn와 Al을 첨가한 LiNi0.85Co0.15O2 양극활물질의 제조 및 전기화학적 특성평가)

  • Kim, Su-Jin;Seo, Jin-Seong;Na, Byung-Ki
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.42-48
    • /
    • 2021
  • Zn and Al added LiNi0.85Co0.15O2 cathode materials were synthesized to improve electrochemical properties and thermal stability using a solid-state route. Crystal structure, particle size and surface shape of the synthesized cathode materials was measured using XRD (X-ray diffraction) and SEM (scanning electron microscopy). CV (cyclic voltammetry), first charge-discharge profiles, rate capability, and cycle life were measured using battery cycler (Maccor, series 4000). Strong binding energy of Al-O bond enhanced structure stability of cathode material. Electrochemical properties were improved by preventing cation mixing between Li+ and Ni2+. Large ion radius of Zn+ increased lattice parameter of NC cathode material, which meant unit-cell volume was expanded. NCZA25 showed 80% of capacity retention at 0.5 C-rate during 100 cycles, which was 12% higher than that of NC cathode. The discharge capacity of NCZA25 showed 104 mAh/g at 5 C-rate. NCZA25 achieved 36 mAh/g more capacity than that of NC cathod. NCZA25 cathode material showed excellent rate capability and cycling performance.

Inference of the Probability Distribution of Phase Difference and the Path Duration of Ground Motion from Markov Envelope (Markov Envelope를 이용한 지진동의 위상차 확률분포와 전파지연시간의 추정)

  • Choi, Hang;Yoon, Byung-Ick
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.5
    • /
    • pp.191-202
    • /
    • 2022
  • Markov envelope as a theoretical solution of the parabolic wave equation with Markov approximation for the von Kármán type random medium is studied and approximated with the convolution of two probability density functions (pdf) of normal and gamma distributions considering the previous studies on the applications of Radiative Transfer Theory (RTT) and the analysis results of earthquake records. Through the approximation with gamma pdf, the constant shape parameter of 2 was determined regardless of the source distance ro. This finding means that the scattering process has the property of an inhomogeneous single-scattering Poisson process, unlike the previous studies, which resulted in a homogeneous multiple-scattering Poisson process. Approximated Markov envelope can be treated as the normalized mean square (MS) envelope for ground acceleration because of the flat source Fourier spectrum. Based on such characteristics, the path duration is estimated from the approximated MS envelope and compared to the empirical formula derived by Boore and Thompson. The results clearly show that the path duration increases proportionately to ro1/2-ro2, and the peak value of the RMS envelope is attenuated by exp (-0.0033ro), excluding the geometrical attenuation. The attenuation slope for ro≤100 km is quite similar to that of effective attenuation for shallow crustal earthquakes, and it may be difficult to distinguish the contribution of intrinsic attenuation from effective attenuation. Slowly varying dispersive delay, also called the medium effect, represented by regular pdf, governs the path duration for the source distance shorter than 100 km. Moreover, the diffraction term, also called the distance effect because of scattering, fully controls the path duration beyond the source distance of 300 km and has a steep gradient compared to the medium effect. Source distance 100-300 km is a transition range of the path duration governing effect from random medium to distance. This means that the scattering may not be the prime cause of peak attenuation and envelope broadening for the source distance of less than 200 km. Furthermore, it is also shown that normal distribution is appropriate for the probability distribution of phase difference, as asserted in the previous studies.

A Study on Particle and Crystal Size Analysis of Lithium Lanthanum Titanate Powder Depending on Synthesis Methods (Sol-Gel & Solid-State reaction) (분말 합성법(Sol-Gel & Solid-State reaction)에 따른 Lithium Lanthanum Titanate 분말의 입자 및 결정 크기 비교 분석에 관한 연구)

  • Jeungjai Yun;Seung-Hwan Lee;So Hyun Baek;Yongbum Kwon;Yoseb Song;Bum Sung Kim;Bin Lee;Rhokyun Kwak;Da-Woon Jeong
    • Journal of Powder Materials
    • /
    • v.30 no.4
    • /
    • pp.324-331
    • /
    • 2023
  • Lithium (Li) is a key resource driving the rapid growth of the electric vehicle industry globally, with demand and prices continually on the rise. To address the limited reserves of major lithium sources such as rock and brine, research is underway on seawater Li extraction using electrodialysis and Li-ion selective membranes. Lithium lanthanum titanate (LLTO), an oxide solid electrolyte for all-solid-state batteries, is a promising Li-ion selective membrane. An important factor in enhancing its performance is employing the powder synthesis process. In this study, the LLTO powder is prepared using two synthesis methods: sol-gel reaction (SGR) and solid-state reaction (SSR). Additionally, the powder size and uniformity are compared, which are indices related to membrane performance. X-ray diffraction and scanning electron microscopy are employed for determining characterization, with crystallite size analysis through the full width at half maximum parameter for the powders prepared using the two synthetic methods. The findings reveal that the powder SGR-synthesized powder exhibits smaller and more uniform characteristics (0.68 times smaller crystal size) than its SSR counterpart. This discovery lays the groundwork for optimizing the powder manufacturing process of LLTO membranes, making them more suitable for various applications, including manufacturing high-performance membranes or mass production of membranes.

MICROSTRUCTURE AND ELECTROCHEMICAL BEHAVIORS OF EQUIATOMIC TiMoVCrZr AND Ti-RICH TiMoVCrZr HIGH-ENTROPY ALLOYS FOR METALLIC BIOMATERIALS

  • HOCHEOL SONG;SEONGI LEE;KWANGMIN LEE
    • Archives of Metallurgy and Materials
    • /
    • v.65 no.4
    • /
    • pp.1317-1322
    • /
    • 2020
  • The present study investigated various thermodynamic parameters, microstructures and electrochemical behaviors of TiMoVCrZr and Ti-rich TiMoVCrZr high-entropy alloys (HEAs) prepared by vacuum arc remelting. The microstructures of the alloys were analyzed using X-ray diffraction (XRD) analysis, field emission scanning electron microscopy (FE-SEM), and potentiodynamic polarization tests. The determined thermodynamic values of the Ω-parameter and the atomic size difference (δ) for the HEAs were determined to be in the range of Ω ≥ 1.1, and δ ≤ 6.6% with valance electron configuration (VEC) ≤ 5.0, suggesting the HEAs were effective at forming solid solutions. XRD patterns of the equiatomic Ti20Mo20V20Cr20Zr20 HEA revealed four phases consisting of the body centered cubic1 (BCC1), BCC2, hexagonal close-packed (HCP), and intermetallic compound Cr2Zr phases. Three phases were observed in the XRD patterns of Ti-rich Ti40Mo15V15Cr15Zr15 (BCC, HCP, and Cr2Zr) and a single BCC phase was observed in Ti-rich Ti60Mo10V10Cr10Zr10 HEAs. The backscattered-electron (BSE) images on the equiatomic Ti20Mo20V20Cr20Zr20 HEA revealed BCC and HCP phases with Cr2Zr precipitates, suggesting precipitation from the HCP solid solution during the cooling. The micro-segregation of Ti-rich Ti60Mo10V10C10Zr10 HEAs appeared to decrease remarkably. The alloying elements in the HEAs were locally present and no phase changes occurred even after additional HIP treatment. The lowest current density obtained in the polarization potential test of Ti-rich Ti40Mo15V15Cr15Zr15 HEA was 7.12×10-4 mA/cm2 was obtained. The studied TiMoVCrZr HEAs showed improved corrosion characteristics as compared to currently available joint replacement material such as ASTM F75 alloy.

Geochemical Characteristics of the Gyeongju LILW Repository II. Rock and Mineral (중.저준위 방사성폐기물 처분부지의 지구화학 특성 II. 암석 및 광물)

  • Kim, Geon-Young;Koh, Yong-Kwon;Choi, Byoung-Young;Shin, Seon-Ho;Kim, Doo-Haeng
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.307-327
    • /
    • 2008
  • Geochemical study on the rocks and minerals of the Gyeongju low and intermediate level waste repository was carried out in order to provide geochemical data for the safety assessment and geochemical modeling. Polarized microscopy, X-ray diffraction method, chemical analysis for the major and trace elements, scanning electron microscopy(SEM), and stable isotope analysis were applied. Fracture zones are locally developed with various degrees of alteration in the study area. The study area is mainly composed of granodiorite and diorite and their relation is gradational in the field. However, they could be easily distinguished by their chemical property. The granodiorite showed higher $SiO_2$ content and lower MgO and $Fe_2O_3$ contents than the diorite. Variation trends of the major elements of the granodiorite and diorite were plotted on the same line according to the increase of $SiO_2$ content suggesting that they were differentiated from the same magma. Spatial distribution of the various elements showed that the diorite region had lower $SiO_2,\;Al_2O_3,\;Na_2O\;and\;K_2O$ contents, and higher CaO, $Fe_2O_3$ contents than the granodiorite region. Especially, because the differences in the CaO and $Na_2O$ distribution were most distinct and their trends were reciprocal, the chemical variation of the plagioclase of the granitic rocks was the main parameter of the chemical variation of the host rocks in the study area. Identified fracture-filling minerals from the drill core were montmorillonite, zeolite minerals, chlorite, illite, calcite and pyrite. Especially pyrite and laumontite, which are known as indicating minerals of hydrothermal alteration, were widely distributed in the study area indicating that the study area was affected by mineralization and/or hydrothermal alteration. Sulfur isotope analysis for the pyrite and oxygen-hydrogen stable isotope analysis for the clay minerals indicated that they were originated from the magma. Therefore, it is considered that the fracture-filling minerals from the study area were affected by the hydrothermal solution as well as the simply water-rock interaction.

  • PDF