• Title/Summary/Keyword: differentiation of technology

Search Result 1,015, Processing Time 0.024 seconds

Effects of Different Day / Night Temperature Regimes on Growth and Clove Development in Cool-type Garlic (Allium sativum L.) (한지형 마늘의 생육 및 인편 발달에 미치는 주야간 온도의 영향)

  • Oh, Soonja;Moon, Kyung Hwan;Koh, Seok Chan
    • Horticultural Science & Technology
    • /
    • v.35 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • We investigated growth, clove development, and photosystem II activity in garlic (Allium sativum L.) grown under different day/night temperature regimes using Soil-Plant-Atmosphere - Research (SPAR) chambers to determine the optimum cultivation temperature and to assess the impact of temperature stress on garlic. In the early stages of growth, plant growth increased markedly with temperature. At harvest time, however, the pseudostem diameter decreased significantly under a relatively low day/night temperature range ($14/10-17/12^{\circ}C$), suggesting that these temperature conditions favor regular bulb growth. At harvest time, the bulb diameter and height were great at $14/10-23/18^{\circ}C$, whereas the bulb fresh weight and number of cloves per bulb were greatest at $17/12-20/15^{\circ}C$. However, the number of regularly developed cloves per bulb was highest at the relatively low temperature range of $14/10-17/12^{\circ}C$, as were the clove length and fresh weight. The photochemical efficiency ($F_v/F_m$) and potential photochemical efficiency ($F_v/F_o$) of photosystem II in the leaves of garlic plants were higher at $14/10-20/15^{\circ}C$ and lower at temperatures below $14/10^{\circ}C$ or above $20/15^{\circ}C$, implying that the $14/10-20/15^{\circ}C$ temperature range is favorable, whereas temperatures outside this range are stressful for garlic growth. Furthermore, at temperatures above $20/15^{\circ}C$, secondary growth of garlic, defined as lateral bud differentiation into secondary plants, continuous growth of the cloves of the primary plants, or the growth of bulbil buds into secondary plants, was enhanced. Therefore, to achieve commercial production of fresh scapes and bulbs of garlic, it may be better to grow garlic at relatively low temperature ranges of $14/10-17/12^{\circ}C$.

A Study on the Choice of Export Payment Types by Applying the Characteristics of the New Trade & Logistics Environment (신(新)무역물류환경의 특성을 적용한 수출대금 결제유형 선택연구)

  • Chang-bong Kim;Dong-jun Lee
    • Korea Trade Review
    • /
    • v.48 no.4
    • /
    • pp.303-320
    • /
    • 2023
  • Recently, import and export companies have been using T/T remittance and Surrender B/L more frequently than L/C when selecting the process and method of trade payment settlement. The new trade and logistics environment is thriving in the era of the Fourth Industrial Revolution (4IR). Document-based trade transactions are undergoing a digitalization as bills of lading or smart contracts are being developed. The purpose of this study is to verify whether exporters choose export payment types based on negotiating factors. In addition, we would like to discuss the application of the characteristics of the new trade and logistics environment. Data for analysis was collected through surveys. The collection method consisted of direct visits to the company, e-mail, fax, and online surveys. The survey distribution period is from February 1, 2023, to April 30, 2023. The questionnaire was distributed in 2,000 copies, and 447 copies were collected. The final 336 copies were used for analysis, excluding 111 copies that were deemed inappropriate for the purpose of this study. The results of the study are shown below. First, among the negotiating factors, the product differentiation of exporters did not significantly affect the selection of export payment types. Second, among the negotiating factors, the greater the purchasing advantage recognized by exporters, the higher the possibility of using the post-transfer method. In addition to analyzing the results, this study suggests that exporters should consider adopting new payment methods, such as blockchain technology-based bills of lading and trade finance platforms, to adapt to the characteristics of the evolving trade and logistics environment. Therefore, exporters should continue to show interest in initiatives aimed at digitizing trade documents as a response to the challenges posed by bills of lading. In future studies, it is necessary to address the lack of social awareness in Korea by conducting advanced research abroad.

The Audience Behavior-based Emotion Prediction Model for Personalized Service (고객 맞춤형 서비스를 위한 관객 행동 기반 감정예측모형)

  • Ryoo, Eun Chung;Ahn, Hyunchul;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.73-85
    • /
    • 2013
  • Nowadays, in today's information society, the importance of the knowledge service using the information to creative value is getting higher day by day. In addition, depending on the development of IT technology, it is ease to collect and use information. Also, many companies actively use customer information to marketing in a variety of industries. Into the 21st century, companies have been actively using the culture arts to manage corporate image and marketing closely linked to their commercial interests. But, it is difficult that companies attract or maintain consumer's interest through their technology. For that reason, it is trend to perform cultural activities for tool of differentiation over many firms. Many firms used the customer's experience to new marketing strategy in order to effectively respond to competitive market. Accordingly, it is emerging rapidly that the necessity of personalized service to provide a new experience for people based on the personal profile information that contains the characteristics of the individual. Like this, personalized service using customer's individual profile information such as language, symbols, behavior, and emotions is very important today. Through this, we will be able to judge interaction between people and content and to maximize customer's experience and satisfaction. There are various relative works provide customer-centered service. Specially, emotion recognition research is emerging recently. Existing researches experienced emotion recognition using mostly bio-signal. Most of researches are voice and face studies that have great emotional changes. However, there are several difficulties to predict people's emotion caused by limitation of equipment and service environments. So, in this paper, we develop emotion prediction model based on vision-based interface to overcome existing limitations. Emotion recognition research based on people's gesture and posture has been processed by several researchers. This paper developed a model that recognizes people's emotional states through body gesture and posture using difference image method. And we found optimization validation model for four kinds of emotions' prediction. A proposed model purposed to automatically determine and predict 4 human emotions (Sadness, Surprise, Joy, and Disgust). To build up the model, event booth was installed in the KOCCA's lobby and we provided some proper stimulative movie to collect their body gesture and posture as the change of emotions. And then, we extracted body movements using difference image method. And we revised people data to build proposed model through neural network. The proposed model for emotion prediction used 3 type time-frame sets (20 frames, 30 frames, and 40 frames). And then, we adopted the model which has best performance compared with other models.' Before build three kinds of models, the entire 97 data set were divided into three data sets of learning, test, and validation set. The proposed model for emotion prediction was constructed using artificial neural network. In this paper, we used the back-propagation algorithm as a learning method, and set learning rate to 10%, momentum rate to 10%. The sigmoid function was used as the transform function. And we designed a three-layer perceptron neural network with one hidden layer and four output nodes. Based on the test data set, the learning for this research model was stopped when it reaches 50000 after reaching the minimum error in order to explore the point of learning. We finally processed each model's accuracy and found best model to predict each emotions. The result showed prediction accuracy 100% from sadness, and 96% from joy prediction in 20 frames set model. And 88% from surprise, and 98% from disgust in 30 frames set model. The findings of our research are expected to be useful to provide effective algorithm for personalized service in various industries such as advertisement, exhibition, performance, etc.

The Effect of Perceived Shopping Value Dimensions on Attitude toward Store, Emotional Response to Store Shopping, and Store Loyalty (지각된 쇼핑가치차원이 점포태도, 쇼핑과정에서의 정서적 경험, 점포충성도에 미치는 영향에 관한 연구)

  • Ahn Kwang Ho;Lee Ha Neol
    • Asia Marketing Journal
    • /
    • v.12 no.4
    • /
    • pp.137-164
    • /
    • 2011
  • In the past, retailers secured customer loyalty by offering convenient locations, unique assortments of goods, better services than competitors, and good credit policy. All this has changed. Goods assortments among stores have become more alike as national-brand manufacturers place their goods in more and more retail stores. Service differentiation also has eroded. Many department stores have trimmed services, and many discount stores have increased theirs. Customers have become smarter shoppers. They don't pay more for identical brands, especially when service differences have diminished. In the face of increased competition from discount storess and specialty stores, department stores are waging a comeback war. Growth of intertype competition, competition between store-based and non-store-based retailing and growing investment in technology are changing the way consumers shop and retailers sell. Different types of stores-discount stores, catalog showrooms, department stores-all compete for the same consumers by carrying the same type of merchandise. The biggest winners are retailers that have helped shoppers to be economically cautious, simplified their increasingly busy and complicated lives, and provided an emotional connection. The growth of e-retailers has forced traditional brick-and-mortar retailers to respond. Basically brick-and-mortar retailers utilize their natural advantages, such as products that shoppers can actually see, touch, and test, real-life customer service, and no delivery lag time for small-sized purchases. They also provide a shopping experience as a strong differentiator. They are adopting practices as calling each shopper a "guest". The store atmosphere should match the basic motivations of the shopper. If target consumers are more likely to be in a task-oriented and functional mindset, then a simpler, more restrained in-store environment may be better. Consistent with this reasoning, some retailers of experiential products are creating in-store entertainment to attract customers who want fun and excitement. The retail experience must deliver value to turn a one-time visitor into a loyal customer. Retailers need a tool that measures the full range of components that define experience-based value. This study uses an experiential value scale(EVS) developed by Mathwick, Malhotra and Rigdon(2001) which reflects the benefits derived from perceptions of playfulness, aesthetics, customer "return on investment" and service excellence. EVS is useful to predict differences in shopping preferences and patronage behavior of customers. EVS consists of items measuring efficiency, economic value, visual appeal, entertainment value, service excellence, escapism, and intrinsic enjoyment, which are subscales of experiencial value. Efficiency, economic value, service excellence are linked to the utilitarian shopping value. And visual appeal, entertainment value, escapism and intrinsic enjoyment are linked to hedonic shopping value. It has been found that consumers value hedonic experiences activated from escapism and attractiveness of shopping environment as much as the product quality, price, and the convenient location. As a result, many department stores, discount stores, and other retailers are introducing differential marketing strategy based on emotional/hedonic values. Many researches suggest that consumers go shopping not only for buying products but also for various shopping experiences. In other words, they seek the practical, rational value as well as social, recreational values in the shopping process(Babin et al, 1994; Bloch et al, 1994). Retailers may enhance buyer's loyalty to store by providing excellent emotional/hedonic value such as the excitement from shopping, not just the practical value of buying good products efficiently. We investigate the effect of perceived shopping values on the emotional experience and store loyalty based on the EVS(Experiential Value Scales) developed by Holbrook(1994), Mathwick, Malhotra and Rigdon(2001). This study assumes that the relative effect of shopping value dimensions on the responses of shoppers will differ according to types of stores and analyzes the moderating effect of store type(department store VS. discount store) on the causal relationship between shopping value dimensions and store loyalty. Emprical results show that utilitarian values of shopping experience and hedonic value of shipping experience give the positive effect on the emotional response of consumers and store loyalty. We also found the moderating effect of store types. The effect of utilitarian shopping values on the attitude toward discount store is higher than the effect of utilitarian shopping values on the attitude toword department store. And the effect of hedonic shopping value on the emotional response to discount store is higher than on the emotional response to department store. The empirical results reflect on the recent trend that discount stores try to fulfill the hedonic needs of consumers as well as utilitarian needs(i.e, low price) that discount stores traditionally have focused on

  • PDF

A Study on the Regional Characteristics of Broadband Internet Termination by Coupling Type using Spatial Information based Clustering (공간정보기반 클러스터링을 이용한 초고속인터넷 결합유형별 해지의 지역별 특성연구)

  • Park, Janghyuk;Park, Sangun;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.45-67
    • /
    • 2017
  • According to the Internet Usage Research performed in 2016, the number of internet users and the internet usage have been increasing. Smartphone, compared to the computer, is taking a more dominant role as an internet access device. As the number of smart devices have been increasing, some views that the demand on high-speed internet will decrease; however, Despite the increase in smart devices, the high-speed Internet market is expected to slightly increase for a while due to the speedup of Giga Internet and the growth of the IoT market. As the broadband Internet market saturates, telecom operators are over-competing to win new customers, but if they know the cause of customer exit, it is expected to reduce marketing costs by more effective marketing. In this study, we analyzed the relationship between the cancellation rates of telecommunication products and the factors affecting them by combining the data of 3 cities, Anyang, Gunpo, and Uiwang owned by a telecommunication company with the regional data from KOSIS(Korean Statistical Information Service). Especially, we focused on the assumption that the neighboring areas affect the distribution of the cancellation rates by coupling type, so we conducted spatial cluster analysis on the 3 types of cancellation rates of each region using the spatial analysis tool, SatScan, and analyzed the various relationships between the cancellation rates and the regional data. In the analysis phase, we first summarized the characteristics of the clusters derived by combining spatial information and the cancellation data. Next, based on the results of the cluster analysis, Variance analysis, Correlation analysis, and regression analysis were used to analyze the relationship between the cancellation rates data and regional data. Based on the results of analysis, we proposed appropriate marketing methods according to the region. Unlike previous studies on regional characteristics analysis, In this study has academic differentiation in that it performs clustering based on spatial information so that the regions with similar cancellation types on adjacent regions. In addition, there have been few studies considering the regional characteristics in the previous study on the determinants of subscription to high-speed Internet services, In this study, we tried to analyze the relationship between the clusters and the regional characteristics data, assuming that there are different factors depending on the region. In this study, we tried to get more efficient marketing method considering the characteristics of each region in the new subscription and customer management in high-speed internet. As a result of analysis of variance, it was confirmed that there were significant differences in regional characteristics among the clusters, Correlation analysis shows that there is a stronger correlation the clusters than all region. and Regression analysis was used to analyze the relationship between the cancellation rate and the regional characteristics. As a result, we found that there is a difference in the cancellation rate depending on the regional characteristics, and it is possible to target differentiated marketing each region. As the biggest limitation of this study and it was difficult to obtain enough data to carry out the analyze. In particular, it is difficult to find the variables that represent the regional characteristics in the Dong unit. In other words, most of the data was disclosed to the city rather than the Dong unit, so it was limited to analyze it in detail. The data such as income, card usage information and telecommunications company policies or characteristics that could affect its cause are not available at that time. The most urgent part for a more sophisticated analysis is to obtain the Dong unit data for the regional characteristics. Direction of the next studies be target marketing based on the results. It is also meaningful to analyze the effect of marketing by comparing and analyzing the difference of results before and after target marketing. It is also effective to use clusters based on new subscription data as well as cancellation data.