• 제목/요약/키워드: differential temperature heating

검색결과 164건 처리시간 0.025초

PVA 하이드로겔의 내열특성에 방사선 가교와 열처리가 미치는 효과 (Effect of the Radiation Crosslinking and Heating on the Heat Resistance of Polyvinyl Alcohol Hydrogels)

  • 박경란;노영창
    • 공업화학
    • /
    • 제16권3호
    • /
    • pp.354-360
    • /
    • 2005
  • 본 연구에서는, 방사선 가교와 열처리에 의해 내열특성을 가진 polyvinyl alcohol (PVA) 수화겔을 제조하였다. 제조된 수화겔의 겔화율, 팽윤도와 겔강도 같은 기계적 특성을 측정하였다. DSC와 XRD를 이용하여 구조적 변화를 알아보았다. 수화겔의 겔화율과 겔강도는 방사선 조사 후에 열처리 과정을 했을 경우에 방사선 조사만 했을 때보다 높은 값을 보였다. 또한, 방사선 조사한 수화겔과 방사선 조사 후에 열처리 과정을 한 수화겔이 고온에서의 내열특성이 우수하였다.

CNT/EEA 반도전층 재료와 XLPE 절연체의 열적 특성 (Specific Heat and Thermal Conductivity Measurement of CNT/EEA Semiconducting Materials and XLPE Insulator)

  • 양종석;이경용;신동훈;박대희
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권11호
    • /
    • pp.514-519
    • /
    • 2006
  • To improve the mean-life and the reliability of power cable, we have investigated specific heat (Cp) and thermal conductivity of XLPE insulator and semiconducting materials in 154[kV] underground power transmission cable. Specimens were made of sheet form with the seven of specimens for measurement. Specific heat (Cp) and thermal conductivity were measured by DSC (Differential Scanning Calorimetry) and Nano Flash Diffusivity. Specific-heat measurement temperature ranges of XLPE insulator were from $20[^{\circ}C]\;to\;90[^{\circ}C]$, and the heating rate was $1[^{\circ}C/min]$. And the measurement temperatures of thermal conductivity were $25[^{\circ}C],\;55[^{\circ}C]\;and\;90[^{\circ}C]$. In case of semiconducting materials, the measurement temperature ranges of specific heat were from $20[^{\circ}C]\;to\;60[^{\circ}C]$, and the heating rate was $1[^{\circ}C/min]$. And the measurement temperatures of thermal conductivity were $25[^{\circ}C]\;and\;55[^{\circ}]C$. From these experimental results both specific heat and thermal conductivity were increased by heating rate because volume of materials was expanded according to rise in temperature. We could know that a small amount of CNT has a excellent thermal properties.

Numerical simulation of non-isothermal flow in oil reservoirs using a two-equation model

  • dos Santos Heringer, Juan Diego;de Souza Debossam, Joao Gabriel;de Souza, Grazione;Souto, Helio Pedro Amaral
    • Coupled systems mechanics
    • /
    • 제8권2호
    • /
    • pp.147-168
    • /
    • 2019
  • This work aims to simulate three-dimensional heavy oil flow in a reservoir with heater-wells. Mass, momentum and energy balances, as well as correlations for rock and fluid properties, are used to obtain non-linear partial differential equations for the fluid pressure and temperature, and for the rock temperature. Heat transfer is simulated using a two-equation model that is more appropriate when fluid and rock have very different thermal properties, and we also perform comparisons between one- and two-equation models. The governing equations are discretized using the Finite Volume Method. For the numerical solution, we apply a linearization and an operator splitting. As a consequence, three algebraic subsystems of linearized equations are solved using the Conjugate Gradient Method. The results obtained show the suitability of the numerical method and the technical feasibility of heating the reservoir with static equipment.

유도가열에 따른 SKH51의 반응고 미세조직 특성 연구 (The Characteristics of Microstructure in the Semi-solid State of SKH51 at High Frequency Induction Heating)

  • 이상용
    • 열처리공학회지
    • /
    • 제25권3호
    • /
    • pp.126-133
    • /
    • 2012
  • Semi-solid forming of the high melting point alloys such as steel is a promising near-net shape forming process for decreasing manufacturing costs and increasing the quality of the final products. This paper presents the microstructure characteristics of SKH51 (high speed tool steel) during heating and holding in the mushy zone between $1233^{\circ}C$ and $1453^{\circ}C$, which has been measured by differential scanning calorimetry (DSC). The results of heating/holding experiments showed that the grain size and the liquid fraction increased gradually with temperature up to $1350^{\circ}C$. The drastic grain growth occurred at heating above $1380^{\circ}C$. The strain-induced melt-activated (SIMA) process has been applied to obtain globular grains in the billet materials. Working by mechanical upsetting and successive heating of SKH51 into the temperatures in the mushy zone resulted in globular grains due to recrystallization and partial melting.

Ni-Ti 합금의 산화거동에 영향을 미치는 열처리 온도의 영향 (Effects of Heat Treatment Temperature on Oxidation Behavior in Ni-Ti Alloy)

  • 김규석;김완철
    • 열처리공학회지
    • /
    • 제22권1호
    • /
    • pp.3-7
    • /
    • 2009
  • Variation in oxidation behavior with heat treatment temperature is investigated for a Ni-Ti alloy using X-ray diffraction, DSC (differential scanning calorimetry) and Auger electron spectroscopy. And the effect of oxidation on transformation behavior and superelasticity is characterized. A cold-worked 50.6Ni-Ti alloy is oxidized at 300-$700^{\circ}C$ for 1 hr in the air atmosphere. With an increase in heating temperature, the structure of $TiO_2$ changes from amorphous (300 and $400^{\circ}C$) to anatase ($500^{\circ}C$), and to rutile ($700^{\circ}C$). Activation energy of oxidation for NiTi is measured to be 51 Kcal/mol when heating temperature is $500^{\circ}C$ or above. Since Ti reacts preferably with oxygen, Ni content increases between matrix and oxide, forming $Ni_{3}Ti$ compounds. The resultant of oxidation decreases significantly $M_s$ and $A_s$ temperature in the specimen oxidized at $900^{\circ}C$ with $B_2{\rightarrow}M$ transformation path. An extra is found on cooling between two peaks in the specimen with $B_2{\rightarrow}R{\rightarrow}M$ one which is oxidized at $900^{\circ}C$ and aged at $500^{\circ}C$. Oxidation deteriorates superelasticity due to formation of Ni-rich compound.

RESPONSES OF THE TRANSITION REGION TO DOWNWARD AND UPWARD FLOWS

  • YUN H. S.;CHAE J.-C.;POLAN A. I.
    • 천문학회지
    • /
    • 제29권spc1호
    • /
    • pp.339-340
    • /
    • 1996
  • In the present study we examine physical characteristics of a thin and rigid magnetic flux tube with a steady flow inside, which is embedded vertically upward in the solar atmosphere. We found from this study that (1) The downward material flow gives rise to a dominant heating in the flux tube which works with the conductive heating in the same direction. However, the upflow flow creates a dominant cooling which works against the conductive heating, resulting in a steeper temperature gradient with a shallower transition region. (2) Since the thickness of the transition region determines the material content in the transition region, a broader transition region of the downflow tube produces a larger differential measure.

  • PDF

100RT급 하수열원 냉난방시스템 적용 (Application for Heating and Cooling System Using Sewage Water)

  • 장기창;윤형기;박성룡;백영진;나호상;신광호
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.215-220
    • /
    • 2006
  • Along with socioeconomic development and improving standard of living, the heat demand for heating and cooling in residential and commercial sectors is expected to expand rapidly, reaching over 43 million TOE by 2010 in Korea(about 80% increase compared with that in 1995). Since most of this heat demand is loop temperature below $60^{\circ}C$, the utilization of 'unused energy' is surely one of very effective measures to both environmental preservation and energy conservation. 'Unused energy' in this paper is implicated as 'temperature differential energy' available from treated sewage water, useful and abundant heat source for heat pump(cooler in summer and warmer in winter than outside air). An analysis was carried out to estimate the energy potential of treated sewage water for heat pump heat source. Some analysis were taken to study the characteristics of a heat pump system using the treated sewage water as heat source.

  • PDF

Entropy Generation Minimization in MHD Boundary Layer Flow over a Slendering Stretching Sheet in the Presence of Frictional and Joule Heating

  • Afridi, Muhammad Idrees;Qasim, Muhammad;Khan, Ilyas
    • Journal of the Korean Physical Society
    • /
    • 제73권9호
    • /
    • pp.1303-1309
    • /
    • 2018
  • In the present paper, we study the entropy analysis of boundary layer flow over a slender stretching sheet under the action of a non uniform magnetic field that is acting perpendicular to the flow direction. The effects of viscous dissipation and Joule heating are included in the energy equation. Using similarity transformation technique the momentum and thermal boundary layer equations to a system of nonlinear differential equations. Numerical solutions are obtained using the shooting and fourth-order Runge-Kutta method. The expressions for the entropy generation number and Bejan number are also obtained using a suggested similarity transformation. The main objective of this article is to investigate the effects of different governing parameters such as the magnetic parameter ($M^2$), Prandtl number (Pr), Eckert number (Ec), velocity index parameter (m), wall thickness parameter (${\alpha}$), temperature difference parameter (${\Omega}$), entropy generation number (Ns) and Bejan number (Be). All these effects are portrayed graphically and discussed in detail. The analysis reveals that entropy generation reduces with decreasing wall thickness parameter and increasing temperature difference between the stretching sheet and the fluid outside the boundary layer. The viscous and magnetic irreversibilities are dominant in the vicinity of the stretching surface.

재생온도가 저온인 경우 제습로터의 재생부/제습부 면적비율과 회전속도 최적화 (Optimization of the Area Ratio of Regeneration to Dehumidification and Rotor Speed on the Condition of Low Regeneration Temperature)

  • 정재동;이대영;윤석만
    • 설비공학논문집
    • /
    • 제19권7호
    • /
    • pp.521-528
    • /
    • 2007
  • The desiccant rotor is the most essential component of desiccant cooling system, but its design relies on manufacturer's experience and principles are not yet clear in spite of a lot of theoretical/experimental work published. The mathematical modeling of desiccant rotor needs solution of coupled partial differential equations of heat and mass transfer. In this study, numerical program is developed and validated using a real desiccant rotor. The calculation results are in reasonable agreement with the experimental data and other available numerical results. Optimization of desiccant rotor on the condition of low regeneration temperature are investigated. The optimal rotor speed at which the process outlet humidity becomes minimized, shows same as that of the system optimization. Compared to high regeneration temperature, broad is the range of optimal speed of low regeneration temperature. Systematic analysis on the optimal area ratio of regeneration to dehumidification section has also been conducted.

Volume Resistivity, Specific Heat and Thermal Conductive Properties of the Semiconductive Shield in Power Cables

  • Lee Kyoung-Yong;Choi Yong-Sung;Park Dae-Hee
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제5C권3호
    • /
    • pp.89-96
    • /
    • 2005
  • To improve the mean-life and reliability of power cables, we have investigated the volume resistivity and thermal properties demonstrated by changing the content of carbon black, an additive of the semiconductive shield for underground power transmission. Nine specimens were made of sheet form for measurement. Volume resistivity of the specimens was measured by a volume resistivity meter after 10 minutes in a preheated oven at temperatures of both 25$\pm$1[$^{\circ}C$] and 90$\pm$ 1[$^{\circ}C$]. As well, specific heat (Cp) and thermal conductivity were measured by Nano Flash Diffusivity and DSC (Differential Scanning Calorimetry). The ranges of measurement temperature were from 0[$^{\circ}C$] to 200[$^{\circ}C$], and heating temperature was 4[$^{\circ}C$/min]. From these experimental results, volume resistivity was high according to an increase of the content of carbon black. Specific heat was decreased, while thermal conductivity was increased according to a rise in the content of carbon black. Furthermore, both specific heat and thermal conductivity were increased by heating temperature because the volume of materials was expanded according to a rise in temperature.