• Title/Summary/Keyword: differential shortening

Search Result 49, Processing Time 0.021 seconds

Evaluation of Drying Shrinkage and Creep Characteristics by Strength Differences of Concrete Mixed with Admixture (혼화재료 혼입 콘크리트 강도 차에 따른 건조수축 및 크리프 특성 평가)

  • Park, Dong-Cheon;Song, Hwa-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.199-200
    • /
    • 2021
  • In the study, creep and dry shrinkage characteristics were evaluated to determine the material properties necessary for structural analysis such as column shortening and differential drying shrinkage. All the experiments were conducted in an constant temperature and humidity room. The mechanical properties as well as the specific creep and ultimate dry shrinkage values were derived. In addition the characteristics of the physical value of the high-strength fiber reinforced concrete were considered.

  • PDF

Differential Localisation of PARP-1 N-Terminal Fragment in PARP-1+/+ and PARP-1-/- Murine Cells

  • Rajiah, Ida Rachel;Skepper, Jeremy
    • Molecules and Cells
    • /
    • v.37 no.7
    • /
    • pp.526-531
    • /
    • 2014
  • Human PARP family consists of 17 members of which PARP-1 is a prominent member and plays a key role in DNA repair pathways. It has an N-terminal DNA-binding domain (DBD) encompassing the nuclear localisation signal (NLS), central automodification domain and C-terminal catalytic domain. PARP-1 accounts for majority of poly-(ADP-ribose) polymer synthesis that upon binding to numerous proteins including PARP itself modulates their activity. Reduced PARP-1 activity in ageing human samples and its deficiency leading to telomere shortening has been reported. Hence for cell survival, maintenance of genomic integrity and longevity presence of intact PARP-1 in the nucleus is paramount. Although localisation of full-length and truncated PARP-1 in PARP-1 proficient cells is well documented, subcellular distribution of PARP-1 fragments in the absence of endogenous PARP-1 is not known. Here we report the differential localisation of PARP-1 Nterminal fragment encompassing NLS in PARP-$1^{+/+}$ and PARP-$1^{-/-}$ mouse embryo fibroblasts by live imaging of cells transiently expressing EGFP tagged fragment. In PARP-$1^{+/+}$ cells the fragment localises to the nuclei presenting a granular pattern. Furthermore, it is densely packaged in the midsections of the nucleus. In contrast, the fragment localises exclusively to the cytoplasm in PARP-$1^{-/-}$ cells. Flourescence intensity analysis further confirmed this observation indicating that the N-terminal fragment requires endogenous PARP-1 for its nuclear transport. Our study illustrates the trafficking role of PARP-1 independently of its enzymatic activity and highlights the possibility that full-length PARP-1 may play a key role in the nuclear transport of its siblings and other molecules.

Wilshire Grand: Outrigger Designs and Details for a Highly Seismic Site

  • Joseph, Leonard M.;Gulec, C. Kerem;Schwaiger, Justin M.
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.1
    • /
    • pp.1-12
    • /
    • 2016
  • The 1100 foot [335 m] tall Wilshire Grand Center tower under construction in Los Angeles illustrates many key outrigger issues. The tower has a long, narrow floor plan and slender central core. Outrigger braces at three groups of levels in the tower help provide for occupant comfort during windy conditions as well as safety during earthquakes. Because outrigger systems are outside the scope of prescriptive code provisions, Performance Based Design (PBD) using Nonlinear Response History Analysis (NRHA) demonstrated acceptability to the Los Angeles building department and its peer review panel. Buckling Restrained Brace (BRB) diagonals are used at all outrigger levels to provide stable cyclic nonlinear behavior and to limit forces generated at columns, connections and core walls. Each diagonal at the lowest set of outriggers includes four individual BRBs to provide exceptional capacities. The middle outriggers have an unusual 'X-braced Vierendeel' configuration to provide clear hotel corridors. The top outriggers are pre-loaded by jacks to address long-term differential shortening between the concrete core and concrete-filled steel perimeter box columns. The outrigger connection details are complex in order to handle large forces and deformations, but were developed with contractor input to enable practical construction.

An Ultra-precision Electronic Clinometer for Measurement of Small Inclination Angles

  • Tan, Siew-Leng;Kataoka, Satoshi;Ishikawa, Tatsuya;Ito, So;Shimizu, Yuuki;Chen, Yuanliu;Gao, Wei;Nakagawa, Satoshi
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.6
    • /
    • pp.539-546
    • /
    • 2014
  • This paper describes an ultra-precision electronic clinometer, which is based on the capacitive-based fluid type, for detection of small inclination angles. The main parts of the clinometer low-noise electronics are two capacitance measurement circuits for converting the capacitances of the capacitors of the clinometer into voltages, and a differential amplifier for obtaining the difference of the capacitances, which is proportional to the input inclination angle. A 16 bit analog to digital (AD) converter is also embedded into the same circuit board, whose output is sent to a PC via RS-232C, for achieving a small noise level down to tens of ${\mu}v$. A compensation method, which is referred to as the delay time method for shortening the stabilization time of the sensor was also discussed. Experimental results have shown the possibility of achieving a measurement resolution of $0.0001^{\circ}$ as well as the quick measurement with the delay time method.

Endothelin Receptor Overexpression Alters Diastolic Function in Cultured Rat Ventricular Myocytes

  • Kang, Mi-Suk;Walker, Jeffery W.;Chung, Ka-Young
    • Biomolecules & Therapeutics
    • /
    • v.20 no.4
    • /
    • pp.386-392
    • /
    • 2012
  • The endothelin (ET) signaling pathway controls many physiological processes in myocardium and often becomes upregulated in heart diseases. The aim of the present study was to investigate the effects of ET receptor upregulation on the contractile function of adult ventricular myocytes. Primary cultured adult rat ventricular myocytes were used as a model system of ET receptor overexpression in the heart. Endothelin receptor type A ($ET_A$) or type B ($ET_B$) was overexpressed by Adenoviral infection, and the twitch responses of infected ventricular myocytes were measured after ET-1 stimulation. Overexpression of $ET_A$ exaggerated positive inotropic effect (PIE) and diastolic shortening of ET-1, and induced a new twitch response including twitch broadening. On the contrary, overexpression of $ET_B$ increased PIE of ET-1, but did not affect other two twitch responses. Control myocytes expressing endogenous receptors showed a parallel increase in twitch amplitude and systolic $Ca^{2+}$ in response to ET-1. However, intracellular $Ca^{2+}$ did not change in proportion to the changes in contractility in myocytes overexpressing $ET_A$. Overexpression of $ET_A$ enhanced both systolic and diastolic contractility without parallel changes in $Ca^{2+}$. Differential regulation of this nature indicates that upregulation of $ET_A$ may contribute to diastolic myocardial dysfunction by selectively targeting myofilament proteins that regulate resting cell length, twitch duration and responsiveness to prevailing $Ca^{2+}$.

Preparation of Quaternary Energetic Composites by Crystallization and Their Thermal Decomposition Characteristics (결정화에 의한 4성분계 에너지 복합체 제조 및 열분해 특성)

  • Kim, Byoung-Soo;Kim, Jae-Kyeong;Ahn, Ik-Sung;Kim, Hyoun-Soo;Koo, Kee-Kahb
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.178-185
    • /
    • 2019
  • Three spherical quaternary composites composed of metal/metal oxide/high explosive/oxidizer were prepared by a crystallization/agglomeration process. From the characteristics of composites by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), the shortening of the decomposition zone of high explosives in the quaternary composite was observed, which may be attributed to the autocatalytic reaction caused by $ClO_2$ or HCl which are ammonium perchlorate (AP) degradation products. The activation energy analysis showed that the activation energy abruptly decreases at the end of the decomposition zone of high explosives, and it was considered to be caused by $HNO_2$ which is common in decomposition products of high explosives. The activation energy predicted from complex pyrolysis results by the distributed activation energy model (DAEM) showed much better in accuracy than those by model-fitting methods such as Kissinger-Akahira-Sunose and Flynn-Wall-Ozawa models.

An Application of Construction Sequence Analysis for Checking Structural Stability of High-Rise Building under Construction (초고층 건물의 시공 중 구조적 안정성 검토를 위한 시공단계해석의 적용)

  • Eom, Tae-Sung;Kim, Jae-Yo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.3
    • /
    • pp.211-221
    • /
    • 2009
  • With recent trends of super-tallness, atypical plan shapes and zoning constructions in high-rise buildings, a structural stability of the building under construction is arising as a key issue for design and construction plan. To ensure the structural stability under construction, the differential column shortening of vertical members, the lateral displacement of tower frames, and differential settlement of raft foundation by unbalanced distributions of a tower self-weight before the completion of a lateral load resisting system should be checked by construction sequence analysis, which should be performed by systematic combinations with structural health monitoring, construction compensation program, and construction panning. This paper presents the scheme of zone-based construction sequence analysis by using the existing commercial analysis program, to check the stability of high-rise building under construction. This scheme is applied to 3-dimensional structural analysis for a real high-rise building under construction. The analysis includes real construction zoning plans and schedules as well as creep and shrinkage effects and time-dependent properties of concrete. The simplified construction sequence and assumed material properties were continuously updated with the change on construction schedule and correlations with in-situ measurement data.

Differential Diagnosis of Chemical-induced Hepatobiliary Toxicities Using a New Hepatobiliary Imaging Agent in Mice

  • Ryu, Chong-Kun;Pie, Jae-Eun;Choe, Jae-Gol;Cheon, Joon;Sohn, Jeong-Won;Jurgen Seidel;David S. Paik;Michael V. Green;Chang H. Paik;Kim, Meyoung-Kon
    • Environmental Mutagens and Carcinogens
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • We have synthesized $^{99m}$Tc-mercaptoacetyltriglycine (MAG3)-biocytin as a new imaging agent for hepatobiliary scintigraphy. The aim of this study was to evaluate the usefulness of $^{99m}$Tc-MAG3-biocytin scintigraphy in differentiating carbon tetrachloride ( $CCl_4$)-induced hepatotoxicity from $\alpha$-naphthylisothiocyanate (ANIT)-induced cholestasis in mice, which reflecting the differential diagnosis of neonatal jaundice caused by neonatal hepatitis from congenital biliary atresia in humans. Methods: Balb/c mice (female, 20 g, n=4-6) were pretreated with $CCl_4$(0.5 or $1.0m\ell$/kg) and ANIT ($150 or 300 m\ell$/kg) 18 h before scintigraphy. Biochemical and histopathological examinations showed a pattern of typical acute hepatitis (increase of transaminases and hepatocellular necnsis) in $CCl_4$-treated mice and cholestasis (increase of alkaline phosphatase and ${\gamma}$-glutamyltransferase, and biliary hyperplasia) in ANIT-treated mice, respectively, Mice were fasted at least 4 hr prior to the intravenous injection of $^{99m}$Tc-MAG3-biocytin (18.5 MBq/20$\mu\textrm{g}$) in 2% human serum albumin in saline. Scintigraphy was performed with a ${\gamma}$-camera equipped with a 1-mm diameter pin-hole collimator for 30 min and images were acquired every 15 s. We compared the values of physical parameters, such as peak liver/heart ratio ($${\gamma}$_{max}$) and peak ratio time ($t_{max}$) far $^{99m}$Tc-MAG3-biocytin scintigraphy. Results: Scintigraphic parameters of the $CCl_4$-pretreated (0.5 $m\ell$/kg) group showed a 81.9% decrease of r$_{max}$, and 42.2% decrease of $t_{max}$, whereas the ANIT-pretreated ( $150m\ell$/kg) group showed a 53% decrease of $r_{max}$, and 2.36-fold increase of $t_{max}$, (P<0.05). These results demonstrate that the decrease of $r_{max}$ and the shortening of $t_{max}$ are characteristic features for hepatotoxicity, in contrast to the increase of $t_{max}$ and decrease of $r_{max}$ for biliary hyperplasia. Conclusion: $^{99m}$Tc-MAG3-biocytin hepatobiliary scintigraphy can distinguish hepatitis from cholestasis in mice model and may be similarly useful in humans which differentiating the cause of neonatal jaundice in clinical study.cal study.cal study.cal study.

  • PDF

Geological structure of the Ogcheon metamorphic zone in the Busan areal Korea: a new geodynamic model to the Heart-shaped Busan gneiss complex (부산지역에서 옥천변성대의 지질구조: 하트상 부산 편마암복합체에 대한 새로운 지구조모델)

  • 강지훈
    • The Journal of the Petrological Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.106-120
    • /
    • 2001
  • The Busan area in the northeastern part of the Ogcheon metamorphic zone, Korea, consists mainly of Precambrian Busan and Bakdallyeong gneiss complexes, Ogcheon metamorphic rocks and Mesozoic granitoids. The Busan gneiss complex shows Heart-shaped distribution laying down eastward, and is surrounded by the Ogcheon metamorphic rocks in the central part of the Busan area. In this study structural examination on the main constituent rocks (Busan gneiss complex and Ogcheon metamorphic rocks) was conducted to clarify the geological structure of the Ogcheon metamorphic zone in the Busan area. It indicates that the geological structure was formed at least by three phases of deformation. (1) Dl deformation: the formative period of the structural units of WNW trend (Sanjeoteo, Busan-II, Busan-I, and Chungiu nappes) and the mylonitic foliations related to the compression of NNE-SSW direction, (2) D2 deformation: the differential E-W shortening and N-S extension period of the structural units of WNW trend related to the compression of E-W or WNW-ESE directions, (3) D3 deformation: the formative period of the kink or open folds of E-W trend related to the compression of N-S direction in the eastern and southern parts of Busan area where the structural units of N-S or NNE trends reoriented owing to the intense D2 deformation were developed. These three phases of deformation are closely connected with the distribution of the structural units and the Heart-shaped Busan gneiss complex laying down eastward, and in this paper a new geodynamic model to the Heart-shaped Busan gneiss complex is suggested: Dl deformation-the zonal distribution of WNW trend with a constant width, D2 deformation - the formation of convex wedges northeastward and southward, D3 deformation - the formation of concave wedge westward.

  • PDF