• Title/Summary/Keyword: differential sensitivity

Search Result 412, Processing Time 0.022 seconds

A Busbar Current Differential Relay with a Compensating Algorithm (보상 알고리즘을 적용한 모선보호용 전류차동 계전기)

  • 강용철;윤재성
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.4
    • /
    • pp.214-220
    • /
    • 2004
  • This paper describes a busbar current differential relay in conjunction with a current transformer(CT) compensating algorithm irrespective of the level of the remanent flux. The compensating algorithm detects the start of first saturation if the third-difference function of the current exceeds the threshold; it estimates the core flux at the first saturation start by inserting the negative value of the third-difference function of the current into the magnetization curve; thereafter, it calculates the core flux during the fault and compensates the distorted current using the magnetization curve. The algorithm estimates the correct secondary current irrespective of the level of the remanent flux and needs no saturation point of the magnetization curve. The proposed relay can improve not only security of the relay on an external fault with CT saturation but sensitivity of the relay on an internal fault; the relay can improve the operating speed on n internal fault with CT saturation. This paper concludes by implementing the relay into a digital signal processor based prototype relay.

A Busbar Current Differential Relay with a Compensating Algorithm (보상 알고리즘을 적용한 모선보호용 전류차동 계전기)

  • 강용철;윤재성
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.4
    • /
    • pp.214-214
    • /
    • 2004
  • This paper describes a busbar current differential relay in conjunction with a current transformer(CT) compensating algorithm irrespective of the level of the remanent flux. The compensating algorithm detects the start of first saturation if the third-difference function of the current exceeds the threshold; it estimates the core flux at the first saturation start by inserting the negative value of the third-difference function of the current into the magnetization curve; thereafter, it calculates the core flux during the fault and compensates the distorted current using the magnetization curve. The algorithm estimates the correct secondary current irrespective of the level of the remanent flux and needs no saturation point of the magnetization curve. The proposed relay can improve not only security of the relay on an external fault with CT saturation but sensitivity of the relay on an internal fault; the relay can improve the operating speed on n internal fault with CT saturation. This paper concludes by implementing the relay into a digital signal processor based prototype relay.

A Percentage Current Differential Relaying Algorithm for Bus Protection Using an Advanced Compensating Algorithm of the CTs (개선된 변류기 보상알고리즘을 적용한 모선보호용 비율전류차동 계전방식)

  • 강용철;윤재성;강상희
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.3
    • /
    • pp.158-164
    • /
    • 2003
  • This paper proposes a percentage current differential relaying algorithm for bus protection using an advanced compensating algorithm of the secondary current of current transformers (CTs). The compensating algorithm estimates the core flux at the start of the first saturation based on the value of the second-difference of the secondary current. Then, it calculates the core flux and compensates distorted currents using the magnetization curve. The algorithm Is unaffected by a remanent flux. The simulation results indicate that the proposed algorithm can discriminate internal faults from external faults when the CT saturates. This paper concludes by implementing the algorithm into a TMS320C6701 digital signal processor. The results of hardware implementation are also satisfactory. The proposed algorithm can improve not only stability of the relay in the case of an external fault but sensitivity of the relay in the case of an internal fault.

A Differential Current-to-Time Interval Converter Using Current-Tunable Schmitt Triggers

  • Chung, Won-Sup
    • Journal of IKEEE
    • /
    • v.21 no.4
    • /
    • pp.375-380
    • /
    • 2017
  • A differential current-to-time interval converter is presented for current mode sensors. It consists of a ramp voltage generator, a current mode sensor, a reference current source, two current-tunable Schmitt triggers, a one-shot multivibrator, and two logic gates. The design principle is to apply a ramp voltage to each input of the two current-tunable Schmitt triggers whose threshold voltages are proportional to the drain current values of the current mode sensors. A proposed circuit converts a current change in the ISFET biosensor into its equivalent pulse width change. A prototype circuit built using TSMC 0.18 nm CMOS process exhibit a conversion sensitivity amounting to $726.9{\mu}s/pH$ over pH variation range of 2-12 and a linearity error less than ${\pm}0.05%$.

Determination of Germanium(IV) by Differential Pulse Anodic Stripping Voltammetry(I) (Differential Pulse Anodic Stripping Voltammetry법에 의한 게르마늄 분석에 관한 연구(제1보))

  • 문동철
    • YAKHAK HOEJI
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 1983
  • Voltammetric deposition and differential pulse anodic stripping (DPASV) of Ge(IV)at a gold electrode was investigated. Germanium (IV) exhibits two stripping peaks by DPASV in sodium borate solution, the first peak at about -1.1v. vs SCE and the second one, in the range of -0.6 to -0.2v. vs SCE. Factors affecting the sensitivity and precision included the nature of working electrode, supporting electrolytes, deposition potential, deposition time, pH, pulse height, voltage scan rate. The relative standard deviation of the measurements of the peak currents, for 100ng/ml Ge(IV), was less than ${\pm}3%$. The detection limit of Ge(IV) was 0.01ng/ml. Percent recovery in the extraction procedure of Ge(IV) from matrices by benzene in c-HCl, followed by back extraction with saturated borax solution, ranged from 96 to 104%.

  • PDF

Nonparaxial Imaging Theory for Differential Phase Contrast Imaging

  • Jeongmin Kim
    • Current Optics and Photonics
    • /
    • v.7 no.5
    • /
    • pp.537-544
    • /
    • 2023
  • Differential phase contrast (DPC) microscopy, a central quantitative phase imaging (QPI) technique in cell biology, facilitates label-free, real-time monitoring of intrinsic optical phase variations in biological samples. The existing DPC imaging theory, while important for QPI, is grounded in paraxial diffraction theory. However, this theory lacks accuracy when applied to high numerical aperture (NA) systems that are vital for high-resolution cellular studies. To tackle this limitation, we have, for the first time, formulated a nonparaxial DPC imaging equation with a transmission cross-coefficient (TCC) for high NA DPC microscopy. Our theoretical framework incorporates the apodization of the high NA objective lens, nonparaxial light propagation, and the angular distribution of source intensity or detector sensitivity. Thus, our TCC model deviates significantly from traditional paraxial TCCs, influenced by both NA and the angular variation of illumination or detection. Our nonparaxial imaging theory could enhance phase retrieval accuracy in QPI based on high NA DPC imaging.

Applicaion of Sensitivity Formulation to Analyze the Dynamic Response due to the Excitation Force for the Undamped Vibration of Cantilever Beam (외팔보의 비감쇠 진동시 가진력에 의한 동적 반응의 민감도 정식화 및 해석)

  • Yun, Seong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.11
    • /
    • pp.29-34
    • /
    • 2020
  • In this study, a sensitivity formulation was applied to analyze the dynamic response due to the effect of the excitation force for the undamped vibration of the cantilever beam. The theoretically fundamental formulations were derived considering an eigenvalue problem and its modal analysis to govern the second order algebraic differential equation in terms of the change in the modal coordinate with respect to the design parameters. A representative physical quantity pertaining to the dynamic response, that is, the rate of change in the dynamic displacement, was observed by changing the design variables, such as the cross-sectional area of the beam. The numerical results were obtained at various locations, considering the application of the external forces and observation of the dynamic displacement. When the detection position was closer to the free end of the cantilever beam, the sensitivity of the dynamic displacement was higher, as predicted through the oscillating motion of the beam. The presented findings can provide guidance to compute the dynamic sensitivity for a flexibly connected structure under dynamic excitations.

Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell

  • Dai, Zuocai;Jiang, Zhiyong;Zhang, Liang;Habibi, Mostafa
    • Advances in nano research
    • /
    • v.10 no.2
    • /
    • pp.175-189
    • /
    • 2021
  • In this article, frequency characteristics, and sensitivity analysis of a size-dependent laminated composite cylindrical nanoshell under bi-directional thermal loading using Nonlocal Strain-stress Gradient Theory (NSGT) are presented. The governing equations of the laminated composite cylindrical nanoshell in thermal environment are developed using Hamilton's principle. The thermodynamic equations of the laminated cylindrical nanoshell are obtained using First-order Shear Deformation Theory (FSDT) and Fourier-expansion based Generalized Differential Quadrature element Method (FGDQM) is implemented to solve these equations and obtain natural frequency and critical temperature of the presented model. The novelty of the current study is to consider the effects of bi-directional temperature loading and sensitivity parameter on the critical temperature and frequency characteristics of the laminated composite nanostructure. Apart from semi-numerical solution, a finite element model was presented using the finite element package to simulate the response of the laminated cylindrical shell. The results created from finite element simulation illustrates a close agreement with the semi-numerical method results. Finally, the influences of temperature difference, ply angle, length scale and nonlocal parameters on the critical temperature, sensitivity, and frequency of the laminated composite nanostructure are investigated, in details.

The optimum structural modification by shape changes (형상변경에 의한 최적구조변경법)

  • 오창근;박석주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.42-49
    • /
    • 1995
  • In this study, the optimum structural modification of the L-type structure by shape changes is suggested. The vibration characteristics of L-type structure are analyzed by the sub-structure synthesis method, and the coordinte sensitivities of each sub-structure are calculated and the change quantities of the positions to be modified are suggested by using the coordinate sensitivities. The results obtained are as follows : 1. The sensitivities of the natural frequency could be calculated by the sensitivity analysis. 2. The change quantities of the position to be modified could be suggested by the optimum structural modification method. 3. The developed program could reduce the process and time of computation, since the sensitivity was directly calculated by differential method, not finite difference method.

  • PDF

Sensitivity Analysis of Amino Acids in Simulated Moving Bed Chromatography

  • Lee, Ju-Weon;Lee, Chong-Ho;Koo, Yoon-Mo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.2
    • /
    • pp.110-115
    • /
    • 2006
  • We conducted a sensitivity analysis of the simulated moving bed (SMB) chromatography with the case model of the separation of two amino acids phenylalanine and tryptophan. We consider a four-zone SMB chromatography where the triangle theory is used to determine the operating conditions. Competitive Langmuir isotherm model was used to determine the adsorption isotherm. The finite difference method is used to solve nonlinear partial differential equation (PDE) systems numerically. We examined the effects of alterations in the operating conditions(feed-extract, feed-raffinate, eluent-extract, eluent-raffinate, recycle, and switching time) and the adsorption isotherm parameters (Langmuir isotherm parameters a and b) on SMB efficiency. The variation range of operating conditions and Langmuir isotherm a was between -50 and 50% of original value and the variation range of the Langmuir isotherm b was between $2.25^{-5}$ and $2.25^5$ times of original value.