• 제목/요약/키워드: differential force

검색결과 426건 처리시간 0.019초

Wave propagation of a functionally graded beam in thermal environments

  • Akbas, Seref Doguscan
    • Steel and Composite Structures
    • /
    • 제19권6호
    • /
    • pp.1421-1447
    • /
    • 2015
  • In this paper, the effect of material-temperature dependent on the wave propagation of a cantilever beam composed of functionally graded material (FGM) under the effect of an impact force is investigated. The beam is excited by a transverse triangular force impulse modulated by a harmonic motion. Material properties of the beam are temperature-dependent and change in the thickness direction. The Kelvin-Voigt model for the material of the beam is used. The considered problem is investigated within the Euler-Bernoulli beam theory by using energy based finite element method. The system of equations of motion is derived by using Lagrange's equations. The obtained system of linear differential equations is reduced to a linear algebraic equation system and solved in the time domain and frequency domain by using Newmark average acceleration method. In order to establish the accuracy of the present formulation and results, the comparison study is performed with the published results available in the literature. Good agreement is observed. In the study, the effects of material distributions and temperature rising on the wave propagation of the FGM beam are investigated in detail.

Soft Magnetic Properties of Annealed Co-Based Amorphous Co66Fe4Ni1B15Si14 Alloy Ribbon

  • Yang, J.S.;Cho, Y.;Son, D.;Ryu, K.S.
    • Journal of Magnetics
    • /
    • 제2권4호
    • /
    • pp.130-134
    • /
    • 1997
  • The amorphous Co-based alloy Co66Fe4Ni1B15Si14 (Metglas 2714A) is a suitable magnetic core material for high frequency operation. Appreciable reduction of the coercive force can be achieved by proper heat treatment. In this study, samples annealed at wide temperature range were analyzed using differential scanning calorimetry, high frequency B-H loop tester, X-ray diffractometer and resistivity meter. The results show that coercive force at 10 kHz decreases with in-creasing annealing temperature up to 773 K, but dramatically increases above this temperature. The squareness shows that the magnetic anisotropy on longitudinal direction of the as-cast state remains up to 773 K. Above this temperature, it decreases down to 0.5 that represents random distribution of magnetic domains. The crystallization abruptly occurs between 781 K and 783 K.

  • PDF

Nonlinear analysis of finite beam resting on Winkler foundation with consideration of beam-soil interface resistance effect

  • Zhang, L.;Zhao, M.H.;Xiao, Y.;Ma, B.H.
    • Structural Engineering and Mechanics
    • /
    • 제38권5호
    • /
    • pp.573-592
    • /
    • 2011
  • Comprehensive and accurate analysis of a finite foundation beam is a challenging engineering problem and an important subject in foundation design. One of the limitation of the traditional Winkler elastic foundation model is that the model neglects the effect of the interface resistance between the beam and the underneath foundation soil. By taking the beam-soil interface resistance into account, a deformation governing differential equation for a finite beam resting on the Winkler elastic foundation is developed. The coupling effect between vertical and horizontal displacements is also considered in the presented method. Using Galerkin method, semi-analytical solutions for vertical and horizontal displacements, axial force, shear force and bending moment of the beam under symmetric loads are presented. The influences of the interface resistance on the behavior of foundation beam are also investigated.

진동하는 원형주상체 주위의 와류 수치 모사 (Numerical Simulation of the Vortical flow around an Oscillating Circular Cylinder)

  • 김광수;이승재;서정천
    • 대한조선학회논문집
    • /
    • 제40권2호
    • /
    • pp.21-27
    • /
    • 2003
  • The phenomena of vortex shedding around a cylinder oscillating harmonically in a fluid at rest are investigated by a two-dimensional numerical simulation of the Navier-Stokes equations. The simulation is based on a vorticity-velocity integro-differential formulation dealing with vorticity, velocity and pressure variables. Three combinations of Reynolds number(Re) and Keulegan-Carpenter number(KC) were taken to investigate the associated vortex development around the cylinder in the different flow regimes. Drag and lift forces are computed to describe their dominant frequency modulation which is related to the vortex shedding and to the harmonic motion of the cylinder.

Series solutions for spatially coupled buckling anlaysis of thin-walled Timoshenko curved beam on elastic foundation

  • Kim, Nam-Il
    • Structural Engineering and Mechanics
    • /
    • 제33권4호
    • /
    • pp.447-484
    • /
    • 2009
  • The spatially coupled buckling, in-plane, and lateral bucking analyses of thin-walled Timoshenko curved beam with non-symmetric, double-, and mono-symmetric cross-sections resting on elastic foundation are performed based on series solutions. The stiffness matrices are derived rigorously using the homogeneous form of the simultaneous ordinary differential equations. The present beam formulation includes the mechanical characteristics such as the non-symmetric cross-section, the thickness-curvature effect, the shear effects due to bending and restrained warping, the second-order terms of semitangential rotation, the Wagner effect, and the foundation effects. The equilibrium equations and force-deformation relationships are derived from the energy principle and expressions for displacement parameters are derived based on power series expansions of displacement components. Finally the element stiffness matrix is determined using force-deformation relationships. In order to verify the accuracy and validity of this study, the numerical solutions by the proposed method are presented and compared with the finite element solutions using the classical isoparametric curved beam elements and other researchers' analytical solutions.

시뮬레이션을 이용한 이동 로봇의 충돌회피 알고리즘 비교 (Comparison of Collision Avoidance Algorithm for a Mobile Robot using a Simulation)

  • 김광진;고낙용;박세승
    • 한국전자통신학회논문지
    • /
    • 제7권1호
    • /
    • pp.187-194
    • /
    • 2012
  • 본 논문에서는 이동 로봇이 자율주행을 하기 위해 사용되는 충돌회피 알고리즘을 실제 로봇과 똑같은 환경에 적용된 시뮬레이터를 통해 성능을 알아본다. 이동 로봇의 충돌회피를 위해 기존에 인공전위계 알고리즘과 Elastic force 알고리즘 등이 제안되어져있다. 본 연구에서는 시뮬레이션을 통해 이 두 가지 방법에 의한 동작시간과 경로의 이동 길이를 비교하였다. 시뮬레이터는 IPC(Inter Process Communication)를 기반으로 개발되어졌으며, 알고리즘의 비교에는 차륜형 이동 로봇을 사용하였다.

A refined functional and mixed formulation to static analyses of fgm beams

  • Madenci, Emrah
    • Structural Engineering and Mechanics
    • /
    • 제69권4호
    • /
    • pp.427-437
    • /
    • 2019
  • In this study, an alternative solution procedure presented by using variational methods for analysis of shear deformable functionally graded material (FGM) beams with mixed formulation. By using the advantages of $G{\hat{a}}teaux$ differential approaches, a refined complex general functional and boundary conditions which comprises seven independent variables such as displacement, rotation, bending moment and higher-order bending moment, shear force and higher-order shear force, is derived for general thick-thin FGM beams via shear deformation beam theories. The mixed-finite element method (FEM) is employed to obtain a beam element which have a 2-nodes and total fourteen degrees-of-freedoms. A computer program is written to execute the analyses for the present study. The numerical results of analyses obtained for different boundary conditions are presented and compared with results available in the literature.

Seismic response of pipes under the effect of fluid based on exact solution

  • Liu, Yanbing;Khadimallah, Mohamed Amine;Behshad, Amir
    • Earthquakes and Structures
    • /
    • 제22권4호
    • /
    • pp.431-437
    • /
    • 2022
  • One of the best choice for transportation of oil and gas at the end of rivers or seas is concrete pipelines. In this article, a concrete pipe at the end of river is assumed under the earthquake load. The Classic shell theory is applied for the modelling and the corresponding motion equations are derived by energy method. An external force induced by fluid around the pipe is asssumed in the final motion equations. For the solution of motion equations, the differential quadrature method (DQM) and Newmark method are applied for deriving the dynamic deflection of the pipe. The effects of various parameters including boundary conditions, fluid and length to thickness ratio are presented on the seismic response of the concrete pipe. The outcomes show that the clamped pipe has lower dynamic deflection with respect to simply pipe. In addition, with the effect of fluid, the dynamic defelction is increased significantly.

Seismic response of pipes under the effect of fluid based on exact solution

  • Liu, Yanbing;Khadimallah, Mohamed Amine;Behshad, Amir
    • Earthquakes and Structures
    • /
    • 제22권5호
    • /
    • pp.439-445
    • /
    • 2022
  • One of the best choice for transportation of oil and gas at the end of rivers or seas is concrete pipelines. In this article, a concrete pipe at the end of river is assumed under the earthquake load. The Classic shell theory is applied for the modelling and the corresponding motion equations are derived by energy method. An external force induced by fluid around the pipe is asssumed in the final motion equations. For the solution of motion equations, the differential quadrature method (DQM) and Newmark method are applied for deriving the dynamic deflection of the pipe. The effects of various parameters including boundary conditions, fluid and length to thickness ratio are presented on the seismic response of the concrete pipe. The outcomes show that the clamped pipe has lower dynamic deflection with respect to simply pipe. In addition, with the effect of fluid, the dynamic defelction is increased significantly.

Large deformations of a flexural frame under nonlinear P-delta effects

  • Afshar, Dana;Afshar, Majid Amin
    • Earthquakes and Structures
    • /
    • 제22권5호
    • /
    • pp.517-526
    • /
    • 2022
  • In this paper, nonlinear P-delta effects are studied on the seismic performance, and the modal responses of a flexural frame, considering large deformations. Using multiple scales method, the nonlinear differential equations of motion are estimated, and the nonlinear interactions between the frame's degrees of freedom are outcropped. The results of time and frequency domain analyzes of a dynamic model are examined under internal resonance cases, and the linear and nonlinear responses are investigated in each modal cases. Also, changing the modal responses with respect to the amplitude and frequency of the harmonic forces is evaluated. It is shown that the dominant absorption of energy is in the first natural frequency of the frame, in the case of earthquake excitation, and when a harmonic force is applied to the frame, the peaks of the frequency domain responses depending on the frequency of harmonic force are in the first, and second or third natural frequency of the structure.