• Title/Summary/Keyword: differential evolution.

Search Result 286, Processing Time 0.027 seconds

Feature Selection Based on Bi-objective Differential Evolution

  • Das, Sunanda;Chang, Chi-Chang;Das, Asit Kumar;Ghosh, Arka
    • Journal of Computing Science and Engineering
    • /
    • v.11 no.4
    • /
    • pp.130-141
    • /
    • 2017
  • Feature selection is one of the most challenging problems of pattern recognition and data mining. In this paper, a feature selection algorithm based on an improved version of binary differential evolution is proposed. The method simultaneously optimizes two feature selection criteria, namely, set approximation accuracy of rough set theory and relational algebra based derived score, in order to select the most relevant feature subset from an entire feature set. Superiority of the proposed method over other state-of-the-art methods is confirmed by experimental results, which is conducted over seven publicly available benchmark datasets of different characteristics such as a low number of objects with a high number of features, and a high number of objects with a low number of features.

Opposition Based Differential Evolution Algorithm for Capacitor Placement on Radial Distribution System

  • Muthukumar, R.;Thanushkodi, K.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.45-51
    • /
    • 2014
  • Distribution system is a critical link between customer and utility. The control of power loss is the main factor which decides the performance of the distribution system. There are two methods such as (i) distribution system reconfiguration and (ii) inclusion of capacitor banks, used for controlling the real power loss. Considering the improvement in voltage profile with the power loss reduction, later method produces better performance than former method. This paper presents an advanced evolutionary algorithm for capacitor inclusion for loss reduction. The conventional sensitivity analysis is used to find the optimal location for the capacitors. In order to achieve a better approximation for the current candidate solution, Opposition based Differential Evolution (ODE) is introduced. The effectiveness of the proposed technique is validated through 10, 33, 34 and85-bus radial distribution systems.

Path-smoothing for a robot arm manipulator using a Gaussian process

  • Park, So-Youn;Lee, Ju-Jang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.4
    • /
    • pp.191-196
    • /
    • 2015
  • In this paper, we present a path-smoothing algorithm for a robot arm manipulator that finds the path using a joint space-based rapidly-exploring random tree. Unlike other smoothing algorithms which require complex mathematical computation, the proposed path-smoothing algorithm is done using a Gaussian process. To find the optimal hyperparameters of the Gaussian process, we use differential evolution hybridized with opposition-based learning. The simulation result indicates that the Gaussian process whose hyperparameters were optimized by hybrid differential evolution successfully smoothed the path generated by the joint space-based rapidly-exploring random tree.

A two-stage damage detection method for truss structures using a modal residual vector based indicator and differential evolution algorithm

  • Seyedpoor, Seyed Mohammad;Montazer, Maryam
    • Smart Structures and Systems
    • /
    • v.17 no.2
    • /
    • pp.347-361
    • /
    • 2016
  • A two-stage method for damage detection in truss systems is proposed. In the first stage, a modal residual vector based indicator (MRVBI) is introduced to locate the potentially damaged elements and reduce the damage variables of a truss structure. Then, in the second stage, a differential evolution (DE) based optimization method is implemented to find the actual site and extent of damage in the structure. In order to assess the efficiency of the proposed damage detection method, two numerical examples including a 2D-truss and 3D-truss are considered. Simulation results reveal the high performance of the method for accurately identifying the damage location and severity of trusses with considering the measurement noise.

Discrete optimal sizing of truss using adaptive directional differential evolution

  • Pham, Anh H.
    • Advances in Computational Design
    • /
    • v.1 no.3
    • /
    • pp.275-296
    • /
    • 2016
  • This article presents an adaptive directional differential evolution (ADDE) algorithm and its application in solving discrete sizing truss optimization problems. The algorithm is featured by a new self-adaptation approach and a simple directional strategy. In the adaptation approach, the mutation operator is adjusted in accordance with the change of population diversity, which can well balance between global exploration and local exploitation as well as locate the promising solutions. The directional strategy is based on the order relation between two difference solutions chosen for mutation and can bias the search direction for increasing the possibility of finding improved solutions. In addition, a new scaling factor is introduced as a vector of uniform random variables to maintain the diversity without crossover operation. Numerical results show that the optimal solutions of ADDE are as good as or better than those from some modern metaheuristics in the literature, while ADDE often uses fewer structural analyses.

Critical buckling load optimization of the axially graded layered uniform columns

  • Alkan, Veysel
    • Structural Engineering and Mechanics
    • /
    • v.54 no.4
    • /
    • pp.725-740
    • /
    • 2015
  • This study presents critical buckling load optimization of the axially graded layered uniform columns. In the first place, characteristic equations for the critical buckling loads for all boundary conditions are obtained using the transfer matrix method. Then, for each case, square of this equation is taken as a fitness function together with constraints. Due to explicitly unavailable objective function for the critical buckling loads as a function of segment length and volume fraction of the materials, especially for the column structures with higher segment numbers, initially, prescribed value is assumed for it and then the design variables satisfying constraints are searched using Differential Evolution (DE) optimization method coupled with eigen-value routine. For constraint handling, Exterior Penalty Function formulation is adapted to the optimization cycle. Different boundary conditions are considered. The results reveal that maximum increments in the critical buckling loads are attained about 20% for cantilevered and pinned-pinned end conditions and 18% for clamped-clamped case. Finally, the strongest column structure configurations will be determined. The scientific and statistical results confirmed efficiency, reliability and robustness of the Differential Evolution optimization method and it can be used in the similar problems which especially include transcendental functions.

Differential Evolution with Multi-strategies based Soft Island Model

  • Tan, Xujie;Shin, Seong-Yoon
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.4
    • /
    • pp.261-266
    • /
    • 2019
  • Differential evolution (DE) is an uncomplicated and serviceable developmental algorithm. Nevertheless, its execution depends on strategies and regulating structures. The combination of several strategies between subpopulations helps to stabilize the probing on DE. In this paper, we propose a unique k-mean soft island model DE(KSDE) algorithm which maintains population diversity through soft island model (SIM). A combination of various approaches, called KSDE, intended for migrating the subpopulation information through SIM is developed in this study. First, the population is divided into k subpopulations using the k-means clustering algorithm. Second, the mutation pattern is singled randomly from a strategy pool. Third, the subpopulation information is migrated using SIM. The performance of KSDE was analyzed using 13 benchmark indices and compared with those of high-technology DE variants. The results demonstrate the efficiency and suitability of the KSDE system, and confirm that KSDE is a cost-effective algorithm compared with four other DE algorithms.

Hybrid Fireworks Algorithm with Dynamic Coefficients and Improved Differential Evolution

  • Li, Lixian;Lee, Jaewan
    • Journal of Internet Computing and Services
    • /
    • v.22 no.2
    • /
    • pp.19-27
    • /
    • 2021
  • Fireworks Algorithm (FWA) is a new heuristic swarm intelligent algorithm inspired by the natural phenomenon of the fireworks explosion. Though it is an effective algorithm for solving optimization problems, FWA has a slow convergence rate and less information sharing between individuals. In this paper, we improve the FWA. Firstly, explosion operator and explosion amplitude are analyzed in detail. The coefficient of explosion amplitude and explosion operator change dynamically with iteration to balance the exploitation and exploration. The convergence performance of FWA is improved. Secondly, differential evolution and commensal learning (CDE) significantly increase the information sharing between individuals, and the diversity of fireworks is enhanced. Comprehensive experiment and comparison with CDE, FWA, and VACUFWA for the 13 benchmark functions show that the improved algorithm was highly competitive.

A Hybrid Estimation of Distribution Algorithm with Differential Evolution based on Self-adaptive Strategy

  • Fan, Debin;Lee, Jaewan
    • Journal of Internet Computing and Services
    • /
    • v.22 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • Estimation of distribution algorithm (EDA) is a popular stochastic metaheuristic algorithm. EDA has been widely utilized in various optimization problems. However, it has been shown that the diversity of the population gradually decreases during the iterations, which makes EDA easily lead to premature convergence. This article introduces a hybrid estimation of distribution algorithm (EDA) with differential evolution (DE) based on self-adaptive strategy, namely HEDADE-SA. Firstly, an alternative probability model is used in sampling to improve population diversity. Secondly, the proposed algorithm is combined with DE, and a self-adaptive strategy is adopted to improve the convergence speed of the algorithm. Finally, twenty-five benchmark problems are conducted to verify the performance of HEDADE-SA. Experimental results indicate that HEDADE-SA is a feasible and effective algorithm.

Optimal Allocation Method of Hybrid Active Power Filters in Active Distribution Networks Based on Differential Evolution Algorithm

  • Chen, Yougen;Chen, Weiwei;Yang, Renli;Li, Zhiyong
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1289-1302
    • /
    • 2019
  • In this paper, an optimal allocation method of a hybrid active power filter in an active distribution network is designed based on the differential evolution algorithm to resolve the harmonic generation problem when a distributed generation system is connected to the grid. A distributed generation system model in the calculation of power flow is established. An improved back/forward sweep algorithm and a decoupling algorithm are proposed for fundamental power flow and harmonic power flow. On this basis, a multi-objective optimization allocation model of the location and capacity of a hybrid filter in an active distribution network is built, and an optimal allocation scheme of the hybrid active power filter based on the differential evolution algorithm is proposed. To verify the effect of the harmonic suppression of the designed scheme, simulation analysis in an IEEE-33 nodes model and an experimental analysis on a test platform of a microgrid are adopted.