• Title/Summary/Keyword: differential evolution.

Search Result 286, Processing Time 0.03 seconds

Experimental characterization of the lateral and near-wake flow for the BARC configuration

  • Pasqualetto, Elena;Lunghi, Gianmarco;Rocchio, Benedetto;Mariotti, Alessandro;Salvetti, Maria Vittoria
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.101-113
    • /
    • 2022
  • We experimentally investigate the high-Reynolds flow around a rectangular cylinder of aspect ratio 5:1. This configuration is the object of the international BARC benchmark. Wind tunnel tests have been carried out for the flow at zero angle of attack and a Reynolds number, based on the crossflow cylinder length and on the freestream velocity, equal, to 40 000. Velocity measurements are obtained by using hot-wire anemometry along 50 different cross-flow traverses on the cylinder side and in the near wake. Differential pressure measurements are acquired on multiple streamwise sections of the model. The obtained measurements are in a good agreement with the state-of-the-art experiments. For the first time among the several contributions to the BARC benchmark, detailed flow measurements are acquired in the region near the cylinder side and in the near-wake flow. The edges and the thickness of the shear layers detaching from the upstream edges are derived from velocity measurements. Furthermore, we compute the flow frequencies characterizing the roll-up of the shear layers, the evolution of vortical structures near the cylinder side and the vortex shedding in the wake.

Measured structural response of a long irregular pit constructed using a top-down method

  • Yang, Sun;Yufei, Che;Zhenxue, Gu;Ruicai, Wang;Yawen, Fan
    • Geomechanics and Engineering
    • /
    • v.31 no.5
    • /
    • pp.489-503
    • /
    • 2022
  • A 1257-m-long irregular deep foundation pit located in the central of Nanjing, China was constructed using the combined full-width and half-width top-down method. Based on the long-term field monitoring data, this study analyzed the evolution characteristics of the vertical movement of the columns, internal force of the struts, and axial force of the structural beam and slab. The relevance of the three mentioned above and their relationship with the excavation process, structural system, and geological conditions were also investigated. The results showed that the column uplift was within the range of 0.08% to 0.22% of the excavation depth, and the embedded depth ratio of the diaphragm wall and the bottom heave affected significantly on the column uplift. The differential settlement between the column and diaphragm wall remained unchanged after the base slab was cast. The final settlement of the diaphragm wall was twice the column uplift. The internal force of the struts did not varied monotonically but was related to numerous factors such as the excavation depth, number of struts, and environmental conditions. Additionally, the dynamic force and deformation of the columns, beams, and slabs were analyzed to investigate the inherent relationship and variation patterns of the responses of different parts of the structure.

Controlling Particle Size of Recycled Copper Oxide Powder for Copper Thermite Welding Characteristics (동 테르밋 용접 특성 향상을 위한 폐 산화동 분말 입도 제어 연구)

  • Hansung Lee;Minsu Kim;Byungmin Ahn
    • Journal of Powder Materials
    • /
    • v.30 no.4
    • /
    • pp.332-338
    • /
    • 2023
  • Thermite welding is an exceptional process that does not require additional energy supplies, resulting in welded joints that exhibit mechanical properties and conductivity equivalent to those of the parent materials. The global adoption of thermite welding is growing across various industries. However, in Korea, limited research is being conducted on the core technology of thermite welding. Currently, domestic production of thermite powder in Korea involves recycling copper oxide (CuO). Unfortunately, controlling the particle size of waste CuO poses challenges, leading to the unwanted formation of pores and cracks during thermite welding. In this study, we investigate the influence of powder particle size on thermite welding in the production of Cu-thermite powder using waste CuO. We conduct the ball milling process for 0.5-24 h using recycled CuO. The evolution of the powder shape and size is analyzed using particle size analysis and scanning electron microscopy (SEM). Furthermore, we examine the thermal reaction characteristics through differential scanning calorimetry. Additionally, the microstructures of the welded samples are observed using optical microscopy and SEM to evaluate the impact of powder particle size on weldability. Lastly, hardness measurements are performed to assess the strengths of the welded materials.

Understanding Mobile e-Text Communication with the Framework of Orality and Literacy: Student Perception of Non-verbal Texts

  • LEE, Hye-Jung;HONG, Young-il;KIM, Yoon-Jung
    • Educational Technology International
    • /
    • v.13 no.1
    • /
    • pp.49-77
    • /
    • 2012
  • The development of mobile devices and network technology is changing the ways in which people communicate with one another. Mobile text message has emerged as one of the most frequently used form of communication, which also gave rise to various non-verbal texts such as emoticons. Nonetheless, the use of text messages has largely been denied in education because text messages often involve colloquial and non-verbal texts considered inappropriate or grammatically incorrect by the teacher. In efforts to provide a theoretical framework to better understand mobile e-text communication, this research compared the practical usages of non-verbal texts in the mobile e-learning environment. The study developed three types of text messages according to the degree of using non-verbal texts and their phraseology as instructors' messages, which were then distributed to 259 students via mobile text messaging. The perceptions of students were analyzed using a semantic differential scale and a questionnaire. The results showed clear differences in students' perceptions of non-verbal text and traditional text, and that optimally designed non-verbal texts turned out to encourage the students' interaction the most out of the three types of text messages. Following the discussion of the results, an expanded theoretical framework beyond Ong's concepts of orality and literacy is also suggested to understand the evolution of mobile e-text communication in education.

Multi-objective structural optimization of spatial steel frames with column orientation and bracing system as design variables

  • Claudio H. B. de Resende;Luiz F. Martha;Afonso C. C. Lemonge;Patricia H. Hallak;Jose P. G. Carvalho;Julia C. Motta
    • Advances in Computational Design
    • /
    • v.8 no.4
    • /
    • pp.327-351
    • /
    • 2023
  • This article explores how multi-objective optimization techniques can be used to design cost-effective and structurally optimal spatial steel structures, highlighting that optimizing performance can be as important as minimizing costs in real-world engineering problems. The study includes the minimization of maximum horizontal displacement, the maximization of the first natural frequency of vibration, the maximization of the critical load factor concerning the first global buckling mode of the structure, and weight minimization as the objectives. Additionally, it outlines a systematic approach to selecting the best design by employing four different evolutionary algorithms based on differential evolution and a multi-criteria decision-making methodology. The paper's contribution lies in its comprehensive consideration of multiple conflicting objectives and its novel approach to simultaneous consideration of bracing system, column orientation, and commercial profiles as design variables.

Frequency-constrained polygonal topology optimization of functionally graded systems subject to dependent-pressure loads

  • Thanh T. Banh;Joowon Kang;Soomi Shin;Lee Dongkyu
    • Steel and Composite Structures
    • /
    • v.51 no.4
    • /
    • pp.363-375
    • /
    • 2024
  • Within the optimization field, addressing the intricate posed by fluidic pressure loads on functionally graded structures with frequency-related designs is a kind of complex design challenges. This paper thus introduces an innovative density-based topology optimization strategy for frequency-constraint functionally graded structures incorporating Darcy's law and a drainage term. It ensures consistent treatment of design-dependent fluidic pressure loads to frequency-related structures that dynamically adjust their direction and location throughout the design evolution. The porosity of each finite element, coupled with its drainage term, is intricately linked to its density variable through a Heaviside function, ensuring a seamless transition between solid and void phases. A design-specific pressure field is established by employing Darcy's law, and the associated partial differential equation is solved using finite element analysis. Subsequently, this pressure field is utilized to ascertain consistent nodal loads, enabling an efficient evaluation of load sensitivities through the adjoint-variable method. Moreover, this novel approach incorporates load-dependent structures, frequency constraints, functionally graded material models, and polygonal meshes, expanding its applicability and flexibility to a broader range of engineering scenarios. The proposed methodology's effectiveness and robustness are demonstrated through numerical examples, including fluidic pressure-loaded frequency-constraint structures undergoing small deformations, where compliance is minimized for structures optimized within specified resource constraints.

Differential synapse density between Purkinje cell dendritic spine and parallel fiber varicosity in the rat cerebellum among the phylogenic lobules

  • Hyun-Wook Kim;Seung Hak Oh;Se Jeong Lee;Ji eun Na;Im Joo Rhyu
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.6.1-6.6
    • /
    • 2020
  • The cerebellum is a region of the brain that plays an important role in motor control. It is classified phylogenetically into archicerebellum, paleocerebellum and neocerebellum. The Purkinje cells are lined in a row called Purkinje cell layer and it has a unique dendritic branches with many spines. The previous study reported that there is a difference of synapse density according to the lobules based on large two-dimensional data. However, recent study with high voltage electron microscopy showed there was no differences in dendritic spine density of the Purkinje cell according to its phylogenetic lobule. We analyzed Purkinje cell density in the II, VI and X lobules by stereological modules and synaptic density was estimated by double disector based on Purkinje cell density in the molecular layer of each lobule. The results showed that there was significant difference in the Purkinje cell density and synapse number according to their phylogenetic lobules. The number of Purkinje cell in a given volume was larger in the archicerebellum, but synapse density was higher in the neocerebellum. These data suggest that cellular and synaptic organization of the Purkinje cell is different according to their phylogenetic background.

Biotypes of the Brown Planthopper, Nilaparvara lugens (Stal) (벼멸구의 생태형)

  • Saxena R.C.;Barrion A.A.
    • Korean journal of applied entomology
    • /
    • v.22 no.2 s.55
    • /
    • pp.52-66
    • /
    • 1983
  • The brown planthopper, N. lugens (Stal), has become a serious pest of rice in tropical Asia during the last decade. At high pest density, its feeding damage causes 'hopperburn' or complete wilting and drying of the rice plant. It also transmits grassy and ragged stunt virus diseases. The estimated losses caused by the pest in tropical Asia exceed $US\$300$ millions. While cultivation of resistant rice varieties has proved to be highly effective against the pest, their long-term stability is threatened because of the evolution of prolific biotypes which can destroy these varieties. At present, identification of biotypes is based principally on the differential reactions of host rice varieties to the pest and on host-mediated behavioral and physiological responses of the pest. Recent findings of morphological differences in adult rostrum, legs, and antennae, body parts that possess receptors for host plant location and discrimination, and cytological differences in N. lugens populations maintained as stock cultures strongly complement other biotype studies. So far, three N. lugens biotypes have been identified in the Philippines. Biotype I can survive on and damage varieties that do not carry and genes for resistance, while Biotype 2 survives on resistant varieties carrying Bph 1 gene and Biotype 3 on varieties carrying gene bph 2. However, none of these biotypes can survive on varieties with genes Bph 3 or bph 4. Several varieties which are resistant in the Philippines are susceptible in India and Sri Lanka as the South Asian biotypes of N. lugens are more virulent than Southeast Asian biotypes. To monitor the pest biotypes in different geographical regions and to identify new sources of resistance, an International Brown Planthopper Nursery has been established in many cooperating countries. The evolution of biotypes is an exceedingly complex process which is governed by the interactions of genetic and biological factors of the pest populations and the genetic makeup of the cultivated varieties. While the strategy for sequential release of varieties with major resistance genes has been fairly successful so far, the monegenic resistance of these varieties makes them vulnerable to the development of the pest biotypes. Therefore, present breeding endeavors envisage utilizing both major and minor resistance genes for effective control of the pest.

  • PDF

Determination of the Langmuir and Temkin Adsorption Isotherms of H for the Cathodic H2 Evolution Reaction at a Pt/KOH Solution Interface Using the Phase-Shift Method

  • Chun Jang-H.;Jeon Sang-K.;Chun Jin-Y.
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.1
    • /
    • pp.19-28
    • /
    • 2006
  • The phase-shift method for determining the Langmuir, Frumkin, and Temkin adsorption isotherms ($\theta_H\;vs.\;E$) of H for the cathodic $H_2$ evolution reaction (HER) at a Pt/0.1 M KOH solution interface has been proposed and verified using cyclic voltammetric, differential pulse voltammetric, and electrochemical impedance techniques. At the Pt/0.1 M KOH solution interface, the Langmuir and Temkin adsorption isotherms ($\theta_H\;vs.\;E$), the equilibrium constants ($K_H=2.9X10^{-4}mol^{-1}$ for the Langmuir and $K_H=2.9X10^{-3}\exp(-4.6\theta_H)mol^{-1}$ for the Temkin adsorption isotherm), the interaction parameters (g=0 far the Langmuir and g=4.6 for the Temkin adsorption isotherm), the rate of change of the standard free energy of $\theta_H\;with\;\theta_H$ (r=11.4 kJ $mol^{-1}$ for g=4.6), and the standard free energies (${\Delta}G_{ads}^{\circ}=20.2kJ\;mol^{-1}$ for $k_H=2.9\times10^{-4}mol^{-1}$, i.e., the Langmuir adsorption isotherm, and $16.7<{\Delta}G_\theta^{\circ}<23.6kJ\;mol^{-1}$ for $K_H=2.9\times10^{-3}\exp(-4.6\theta_H)mol^{-1}$ and $0.2<\theta_H<0.8$, i.e., the Temkin adsorption isotherm) of H for the cathodic HER are determined using the phase-shift method. At intermediate values of $\theta_H$, i.e., $0.2<\theta_H<0.8$, the Temkin adsorption isotherm ($\theta_H\;vs.\;E$) corresponding to the Langmuir adsorption isotherm ($\theta_H\;vs.\;E$), and vice versa, is readily determined using the constant conversion factors. The phase-shift method and constant conversion factors are useful and effective for determining the Langmuir, Frumkin, and Temkin adsorption isotherms of intermediates for sequential reactions and related electrode kinetic and thermodynamic data at electrode catalyst interfaces.

An Introduction to Kinetic Monte Carlo Methods for Nano-scale Diffusion Process Modeling (나노 스케일 확산 공정 모사를 위한 동력학적 몬테칼로 소개)

  • Hwang, Chi-Ok;Seo, Ji-Hyun;Kwon, Oh-Seob;Kim, Ki-Dong;Won, Tae-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.6
    • /
    • pp.25-31
    • /
    • 2004
  • In this paper, we introduce kinetic Monte Carlo (kMC) methods for simulating diffusion process in nano-scale device fabrication. At first, we review kMC theory and backgrounds and give a simple point defect diffusion process modeling in thermal annealing after ion (electron) implantation into Si crystalline substrate to help understand kinetic Monte Carlo methods. kMC is a kind of Monte Carlo but can simulate time evolution of diffusion process through Poisson probabilistic process. In kMC diffusion process, instead of. solving differential reaction-diffusion equations via conventional finite difference or element methods, it is based on a series of chemical reaction (between atoms and/or defects) or diffusion events according to event rates of all possible events. Every event has its own event rate and time evolution of semiconductor diffusion process is directly simulated. Those event rates can be derived either directly from molecular dynamics (MD) or first-principles (ab-initio) calculations, or from experimental data.