• Title/Summary/Keyword: differential display analysis

Search Result 102, Processing Time 0.021 seconds

Isolation and Characterization of a Wound or UV Induced cDNA Fragment from Pleurotus sajor-caju (상처 및 자외선 자극에 반응하는 여름느타리 cDNA 단편의 분리 및 그 발현 특성)

  • Park, Soo-Chul;Jung, Uk-Jin;Jeong, Mi-Jeong;Kim, Bum-Gi;Yoo, Young-Bok;Ryu, Jin-Chang
    • The Korean Journal of Mycology
    • /
    • v.26 no.3 s.86
    • /
    • pp.314-320
    • /
    • 1998
  • A 0.4 kb cDNA fragment was isolated from mRNA of UV or mechanical wound damaged Pleurotus sajor-caju by the differential display method. Expression of the gene corresponding to this cDNA fragment was highly induced by mechanical wound damage or UV treatment. This gene showed only basal level expression in mycelia, stipe, and cap under normal growth conditions. Sequencing analysis showed that this cDNA fragment contains partial open reading frame. Homology search using genbank database revealed that although this gene do not have homology with already reported wound induced genes, it has a significant sequence homology in defined region with the cdc2-related protein kinase gene which is known to be involved in negative regulation of meiotic maturation in Xenopus oocytes.

  • PDF

Vibration analysis of asymmetric shear wall and thin walled open section structures using transfer matrix method

  • Bozdogan, Kanat Burak;Ozturk, Duygu
    • Structural Engineering and Mechanics
    • /
    • v.33 no.1
    • /
    • pp.95-107
    • /
    • 2009
  • A method for vibration analysis of asymmetric shear wall and Thin walled open section structures is presented in this paper. The whole structure is idealized as an equivalent bending-warping torsion beam in this method. The governing differential equations of equivalent bending-warping torsion beam are formulated using continuum approach and posed in the form of simple storey transfer matrix. By using the storey transfer matrices and point transfer matrices which consider the inertial forces, system transfer matrix is obtained. Natural frequencies can be calculated by applying the boundary conditions. The structural properties of building may change in the proposed method. A numerical example has been solved at the end of study by a program written in MATLAB to verify the presented method. The results of this example display the agreement between the proposed method and the other valid method given in literature.

Identification of Differentially Expressed Genes by Gabapentin in Cultured Dorsal Root Ganglion in a Rat Neuropathic Pain Model

  • Heo, Ji Hye;Lee, Seung Ha;Chang, Kyung Ha;Han, Eun Hye;Lee, Seung Gwan;Choi, Dal Woong;Kim, Suhng Wook
    • Biomolecules & Therapeutics
    • /
    • v.21 no.2
    • /
    • pp.126-131
    • /
    • 2013
  • Neuropathic pain is a chronic pain disorder caused by nervous system lesions as a direct consequence of a lesion or by disease of the portions of the nervous system that normally signal pain. The spinal nerve ligation (SNL) model in rats that reflect some components of clinical pain have played a crucial role in the understanding of neuropathic pain. To investigate the direct effects of gabapentin on differential gene expression in cultured dorsal root ganglion (DRG) cells of SNL model rats, we performed a differential display reverse transcription-polymerase chain reaction analysis with random priming approach using annealing control primer. Genes encoding metallothionein 1a, transforming growth factor-${\beta}1$ and palmitoyl-protein thioesterase-2 were up-regulated in gabapentin-treated DRG cells of SNL model rats. The functional roles of these differentially expressed genes were previously suggested as neuroprotective genes. Further study of these genes is expected to reveal potential targets of gabapentin.

Identification of Differentially Expressed Genes in Human Mesenchymal Stem Cell-Derived Neurons

  • Heo, Ji-Hye;Cho, Kyung-Jin;Choi, Dal-Woong;Kim, Suhng-Wook
    • Toxicological Research
    • /
    • v.26 no.1
    • /
    • pp.15-19
    • /
    • 2010
  • Mesenchymal stem cells (MSCs) have greater potential for immediate clinical and toxicological applications, due to their ability to self-renew, proliferate, and differentiate into a variety of cell types. To identify novel candidate genes that were specifically expressed during transdifferentiation of human MSCs to neuronal cells, we performed a differential expression analysis with random priming approach using annealing control primer-based differential display reverse transcription-polymerase chain reaction approach. We identified genes for acyl-CoA thioesterase, tissue inhibitor of metalloproteinases-1, brain glycogen phosphorylase, ubiquitin C-terminal hydrolase and aldehyde reductase were up-regualted, whereas genes for transgelin and heparan sulfate proteoglycan were down-regulated in MSC-derived neurons. These differentially expressed genes may have potential role in regulation of neurogenesis. This study could be applied to environmental toxicology in the field of testing the toxicity of a chemical or a physical agent.

Characterization of a Solution-processed YHfZnO Gate Insulator for Thin-Film Transistors

  • Kim, Si-Joon;Kim, Dong-Lim;Kim, Doo-Na;Kim, Hyun-Jae
    • Journal of Information Display
    • /
    • v.11 no.4
    • /
    • pp.165-168
    • /
    • 2010
  • A solution-processed multicomponent oxide, yttrium hafnium zinc oxide (YHZO), was synthesized and deposited as a gate insulator. The YHZO film annealed at $600^{\circ}C$ contained an amorphous phase based on the results of thermogravimetry, differential thermal analysis, and X-ray diffraction. The electrical characteristics of the YHZO film were analyzed by measuring the leakage current. The high dielectric constant (16.4) and high breakdown voltage (71.6 V) of the YHZO films resulted from the characteristics of $HfO_2$ and $Y_2O_3$, respectively. To examine if YHZO can be applied to thin-film transistors (TFTs), indium gallium zinc oxide TFTs with a YHZO gate insulator were also fabricated. The desirable characteristics of the YHZO films when used as a gate insulator show that the limitations of the general binary-oxide-based materials and of the conventional vacuum processes can be overcome.

Cure Characteristics of Naphthalene Type Epoxy Resins for SEMC (Sheet Epoxy Molding Compound) for WLP (Wafer Level Package) Application (WLP(Wafer Level Package)적용을 위한 SEMC(Sheet Epoxy Molding Compounds)용 Naphthalene Type Epoxy 수지의 경화특성연구)

  • Kim, Whan Gun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.1
    • /
    • pp.29-35
    • /
    • 2020
  • The cure characteristics of three kinds of naphthalene type epoxy resins(NET-OH, NET-MA, NET-Epoxy) with a 2-methyl imidazole(2MI) catalyst were investigated for preparing sheet epoxy molding compound(SEMC) for wafer level package(WLP) applications, comparing with diglycidyl ether of bisphenol-A(DGEBA) and 1,6-naphthalenediol diglycidyl ether(NE-16) epoxy resin. The cure kinetics of these systems were analyzed by differential scanning calorimetry with an isothermal approach, and the kinetic parameters of all systems were reported in generalized kinetic equations with diffusion effects. The NET-OH epoxy resin represented an n-th order cure mechanism as like NE-16 and DGEBA epoxy resins, however, the NET-MA and NET-Epoxy resins showed an autocatalytic cure mechanism. The NET-OH and NET-Epoxy resins showed higher cure conversion rates than DGEBA and NE-16 epoxy resins, however, the lowest cure conversion rates can be seen in the NET-MA epoxy resin. Although the NETEpoxy and NET-MA epoxy resins represented higher cure reaction conversions comparing with DGEBA and NE-16 resins, the NET-OH showed the lowest cure reaction conversions. It can be figured out by kinetic parameter analysis that the lowest cure conversion rates of the NET-MA epoxy resin are caused by lower collision frequency factor, and the lowest cure reaction conversions of the NET-OH are due to the earlier network structures formation according to lowest critical cure conversion.

Properties of impact modifier reinforced PPS/MWCNT Nanocomposite (충격보강제가 보강된 PPS (polyphenylene sulfide)/MWCNT (multi-walled carbon nanotube) 나노복합체의 물성연구)

  • Park, Ji Soo;Kim, Seung Beom;Nam, Byeong Uk
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.2
    • /
    • pp.75-80
    • /
    • 2012
  • Polymer composites which have electrical properties have been studied in various industries. The Multi-walled carbon nanotube (MWCNT) are thought to be reinforcements for polymers because of their high aspect ratio and specially mechanical, thermal and electrical properties. We introduced MWCNT and impact modifier in order to improve thermal and mechanical properties of Polyphenylene sulfide (PPS) and give electric characteristic to PPS. The thermal properties were investigated by Differential scanning calorimeter (DSC) and Thermogravimetric analysis (TGA). The morphology, mechanical properties and electrical characteristic were performed by Field emission scanning electron microscopy (FE-SEM), Izod impact tester and surface resistance meter. As a result, we could find that the PPS/MWCNT composites have high conductivity and good mechanical properties than neat PPS resin.

Cure Properties of Isocyanurate Type Epoxy Resin Systems for FO-WLP (Fan Out-Wafer Level Package) Next Generation Semiconductor Packaging Materials (FO-WLP (Fan Out-Wafer Level Package) 차세대 반도체 Packaging용 Isocyanurate Type Epoxy Resin System의 경화특성연구)

  • Kim, Whan Gun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.65-69
    • /
    • 2019
  • The cure properties of ethoxysilyl diglycidyl isocyanurate(Ethoxysilyl-DGIC) and ethylsilyl diglycidyl isocyanurate (Ethylsilyl-DGIC) epoxy resin systems with a phenol novolac hardener were investigated for anticipating fan out-wafer level package(FO-WLP) applications, comparing with ethoxysilyl diglycidyl ether of bisphenol-A(Ethoxysilyl-DGEBA) epoxy resin systems. The cure kinetics of these systems were analyzed by differential scanning calorimetry with an isothermal approach, and the kinetic parameters of all systems were reported in generalized kinetic equations with diffusion effects. The isocyanurate type epoxy resin systems represented the higher cure conversion rates comparing with bisphenol-A type epoxy resin systems. The Ethoxysilyl-DGIC epoxy resin system showed the highest cure conversion rates than Ethylsilyl-DGIC and Ethoxysilyl-DGEBA epoxy resin systems. It can be figured out by kinetic parameter analysis that the highest conversion rates of Ethoxysilyl-DGIC epoxy resin system are caused by higher collision frequency factor. However, the cure conversion rate increases of the Ethylsilyl-DGEBA comparing with Ethoxysilyl-DGEBA are due to the lower activation energy of Ethylsilyl-DGIC. These higher cure conversion rates in the isocyanurate type epoxy resin systems could be explained by the improvements of reaction molecule movements according to the compact structure of isocyanurate epoxy resin.

Analysis of Sleep Breathing Type According to Breathing Strength (호흡 강도에 따른 수면 호흡 유형 분석)

  • Kang, Yunju;Jung, Sungoh;Kook, Joongjin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.1-5
    • /
    • 2021
  • Sleep apnea refers to a condition in which a person does not breathe during sleep, and is a dangerous symptom that blocks oxygen supply in the body, causing various complications, and the elderly and infants can die if severe. In this paper, we present an algorithm that classifies sleep breathing by analyzing the intensity of breathing with images alone in preparation for the risk of sleep apnea. Only the chest of the person being measured is set to the Region of Interest (ROI) to determine the breathing strength by the differential image within the corresponding ROI area. The adult was selected as the target of the measurement and the breathing strength was measured accurately, and the difference in breathing intensity was also distinguished using depth information. Two videos of sleeping babies also show that even microscopic breathing motions smaller than adults can be detected, which is also expected to help prevent infant death syndrome (SIDS).

Properties of Glass Melting Using Recycled Refused Coal Ore (선탄 경석 재활용 원료를 이용한 유리 용융 특성)

  • Lee, Ji-Sun;Kim, Sun-Woog;Ra, Yong-Ho;Lee, Youngjin;Lim, Tae-Young;Hwang, Jonghee;Jeon, Dae-Woo;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.29 no.11
    • /
    • pp.727-733
    • /
    • 2019
  • In this study, the glass melting properties are evaluated to examine the possibility of using refused coal ore as replacement for ceramic materials. To fabricate the glass, refused coal ore with calcium carbonate and sodium carbonate in it (which are added as supplementary materials) is put into an alumina crucible, melted at $1,200{\sim}1,500^{\circ}C$ for 1 hr, and then annealed at $600^{\circ}C$ for 2 hrs. We fabricate a black colored glass. The properties of the glass are measured by XRD (X-ray diffractometry) and TG-DTA (thermogravimetry-differential thermal analysis). Glass samples manufactured at more than $1,300^{\circ}C$ with more than 60 % of refused coal ore are found by XRD to be non-crystalline in nature. In the case of the glass sample with 40 % of refused coal ore, from the sample melted at $1,200^{\circ}C$, a sodium aluminum phosphate peak, a disodium calcium silicate peak, and an unknown peak are observed. On the other hand, in the sample melted at $1,300^{\circ}C$, only the sodium aluminum phosphate peak and unknown peak are observed. And, peak changes that affect crystallization of the glass according to melting temperature are found. Therefore, it is concluded that glass with refused coal ore has good melting conditions at more than $1,200^{\circ}C$ and so can be applied to the construction field for materials such as glass tile, foamed glass panels, etc.