• 제목/요약/키워드: differential correction

검색결과 225건 처리시간 0.027초

A study on improvement of positioning accuracy using DGPS technique with low cost GPS modules (저가의 GPS 모듈에 DGPS 기술을 이용한 위치측정정확도 개선에 관한 연구)

  • 이창복;안준석;주세철;김기두
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • 제12권2호
    • /
    • pp.155-161
    • /
    • 1994
  • Accurate positioning method using low cost GPS modules is proposed, which use the technique of differential GPS. DGPS experiments have been made using two coarse-acquisition (C/A) code GPS modules. Position accuracy of better than 5 m was obtained for position dilution of precision (PDOP) of 2-3 and that of better than 10 m after filtering was obtained for PDOP of about 9 in a local area. Static DGPS experiments were performed at Kookmin university with the DGPS correction data of KRISS reference station at Taejon. The distance between two stations is about 140 km. The results show that precision of the position is about 10 m (2 drms), which is ten times better than the results with the GPS module alone. Accuracy of about 10 meters can be obtained in near real time by the DGPS service with a reference station in our country.

  • PDF

Autonomous Real-time Relative Navigation for Formation Flying Satellites

  • Shim, Sun-Hwa;Park, Sang-Young;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • 제26권1호
    • /
    • pp.59-74
    • /
    • 2009
  • Relative navigation system is presented using GPS measurements from a single-channel global positioning system (GPS) simulator. The objective of this study is to provide the real-time inter-satellite relative positions as well as absolute positions for two formation flying satellites in low earth orbit. To improve the navigation performance, the absolute states are estimated using ion-free GRAPHIC (group and phase ionospheric correction) pseudo-ranges and the relative states are determined using double differential carrier-phase data and singled-differential C/A code data based on the extended Kalman filter and the unscented Kalman filter. Furthermore, pseudo-relative dynamic model and modified relative measurement model are developed. This modified EKF method prevents non-linearity of the measurement model from degrading precision by applying linearization about absolute navigation solutions not about the priori estimates. The LAMBDA method also has been used to improve the relative navigation performance by fixing ambiguities to integers for precise relative navigation. The software-based simulation has been performed and the steady state accuracies of 1 m and 6 mm ($1{\sigma}$ of 3-dimensional difference errors) are achieved for the absolute and relative navigation using EKF for a short baseline leader/follower formation. In addition, the navigation performances are compared for the EKF and the UKF for 10 hours simulation, and relative position errors are mm-level for the two filters showing the similar trends.

Treatment of patients with midline discrepancies using three-piece basal archwire (Three-piece basal archwire를 이용한 치열 정중선 불일치의 교정치료)

  • Kim, Seok-Jun;Son, Woo-Sung
    • The korean journal of orthodontics
    • /
    • 제30권4호
    • /
    • pp.377-386
    • /
    • 2000
  • At the finishing stage, the use of asymmetric elastics to treat mild skeletal and dental midline discrepancies often creates several side effects such as canted occlusal plane, tipped incisors and unesthetic results. This report presents the clinical cases with midline discrepancies, following a differential diagnosis, optimal mechanics, and considerations in treatment. Differential diagnosis and treatment mechanics with three-piece basal archwire can obtain predictable midline correction with minimal side effects.

  • PDF

A Study on Urban Change Detection Using D-DSM from Stereo Satellite Data

  • Jang, Yeong Jae;Oh, Kwan Young;Lee, Kwang Jae;Oh, Jae Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • 제37권5호
    • /
    • pp.389-395
    • /
    • 2019
  • Unlike aerial images covering small region, satellite data show high potential to detect urban scale geospatial changes. The change detection using satellite images can be carried out using single image or stereo images. The single image approach is based on radiometric differences between two images of different times. It has limitations to detect building level changes when the significant occlusion and relief displacement appear in the images. In contrast, stereo satellite data can be used to generate DSM (Digital Surface Model) that contain information of relief-corrected objects. Therefore, they have high potential for the object change detection. Therefore, we carried out a study for the change detection over an urban area using stereo satellite data of two different times. First, the RPC correction was performed for two DSMs generation via stereo image matching. Then, D-DSM (Differential DSM) was generated by differentiating two DSMs. The D-DSM was used for the topographic change detection and the performance was checked by applying different height thresholds to D-DSM.

Vibration Evaluation of Concrete Mixer Reducer (콘크리트 믹서 감속기의 진동 평가)

  • Cho, Yonsang;Bae, MyoungHo
    • Tribology and Lubricants
    • /
    • 제35권1호
    • /
    • pp.71-76
    • /
    • 2019
  • The differential planetary gear reducer as a main component of the concrete mixer driving mechanism requires a strong torque to mix concrete compounds. As this component is currently dependent on imports, it is necessary to develop it by conducting a study on vibration analysis and the resonance problem. The noise and vibration of a concrete mixer reducer increase owing to the transmission error of planetary gears, and the damage of components occurs owing to the problems in design and production. In this study, the tooth-passing frequency is calculated to evaluate the noise and vibration of a mixer reducer, and a fast Fourier transform (FFT) analysis is conducted through a vibration test using an acceleration sensor. The vibration of the reducer is measured at three points of input and output of the shaft and planetary gear housing with fixed and variable revolutions per minute. The operating conditions of gears and bearings are evaluated by performing the FFT analysis, and the resonance problem is verified. The results show that No. 1 pinion and ring gears revolve disproportionately. The amplitude values appear high, and the wear of tooth faces occur in tooth-passing frequencies and harmonic components of No. 1 and No. 2 pinion-ring gears. Therefore, we conclude that design changes in the reducer and a correction of tooth profiles are required.

Static and stress analyses of bi-directional FG porous plate using unified higher order kinematics theories

  • Mohamed, Salwa;Assie, Amr E.;Mohamed, Nazira;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • 제45권3호
    • /
    • pp.305-330
    • /
    • 2022
  • This article aims to investigate the static deflection and stress analysis of bi-directional functionally graded porous plate (BDFGPP) modeled by unified higher order kinematic theories to include the shear stress effects, which not be considered before. Different shear functions are described according to higher order models that satisfy the zero-shear influence at the top and bottom surfaces, and hence refrain from the need of shear correction factor. The material properties are graded through two spatial directions (i.e., thickness and length directions) according to the power law distribution. The porosities and voids inside the material constituent are described by different cosine functions. Hamilton's principle is implemented to derive the governing equilibrium equation of bi-directional FG porous plate structures. An efficient numerical differential integral quadrature method (DIQM) is exploited to solve the coupled variable coefficients partial differential equations of equilibrium. Problem validation and verification have been proven with previous prestigious work. Numerical results are illustrated to present the significant impacts of kinematic shear relations, gradation indices through thickness and length, porosity type, and boundary conditions on the static deflection and stress distribution of BDFGP plate. The proposed model is efficient in design and analysis of many applications used in nuclear, mechanical, aerospace, naval, dental, and medical fields.

Method for Detection and Identification of Satellite Anomaly Based on Pseudorange (의사거리 기반 위성 이상 검출 및 식별 기법)

  • Seo, Ki-Yeol;Park, Sang-Hyun;Jang, Won-Seok;Kim, Young-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • 제22권3호
    • /
    • pp.328-333
    • /
    • 2012
  • Current differential GPS (DGPS) system consists of reference station (RS), integrity monitor (IM), and control station (CS). The RS computes the pseudorange corrections (PRC) and generates the RTCM messages for broadcasting. The IM receives the corrections from the RS broadcasting and verifies that the information is within tolerance. The CS performs realtime system status monitoring and control of the functional and performance parameters. The primary function of a DGPS integrity monitor is to verify the correction information and transmit feedback messages to the reference station. However, the current algorithms for integrity monitoring have the limitations of integrity monitor functions for satellite outage or anomalies. Therefore, this paper focuses on the detection and identification methods of satellite anomalies for maritime DGPS RSIM. Based on the function analysis of current DGPS RSIM, it first addresses the limitation of integrity monitoring functions for DGPS RSIM, and then proposes the detection and identification method of satellite anomalies. In addition, it simulates an actual GPS clock anomaly case using a GPS simulator to analyze the limitations of the integrity monitoring function. It presents the brief test results using the proposed methods for detection and identification of satellite anomalies.

Ionospheric Modeling using Wavelet for WADGPS (Wavelet을 이용한 광역보정위성항법을 위한 전리층 모델링)

  • Sohn, Kyoung-Ho;Kee, Chang-Don
    • Journal of Advanced Navigation Technology
    • /
    • 제11권4호
    • /
    • pp.371-377
    • /
    • 2007
  • Ionospheric time delay is one of the main error source for single-frequency DGPS applications, including time transfer and Wide Area Differential GPS (WADGPS). Grid-based algorithm was already developed for WADGPS but that algorithm is not applicable to geomagnetic storm condition in accuracy and management. In geomagnetic storm condition, the spatial distribution of vertical ionospheric delay is noisy and therefore the accuracy of modeling become low in grid-based algorithm. For better accuracy, function based algorithm can be used but the continuity of correction message is not guranteed. In this paper, we propose the ionospheric model using wavelet based algorithm. This algorithm shows better accuracy with the same number of correction message than the existing spherical harmonics algorithm and guarantees the continuity of correction messages when the number of message is expanded for geomagnetic storm condition.

  • PDF

A Study on the DGPS Service Utilization for the Low-cost GPS Receiver Module Based on the Correction Projection Algorithm (위성배치정보와 보정정보 맵핑 알고리즘을 이용한 저가형 GPS 수신기의 DGPS 서비스 적용 방안 연구)

  • Park, Byung-Woon;Yoon, Dong-Hwan
    • Journal of Navigation and Port Research
    • /
    • 제38권2호
    • /
    • pp.121-126
    • /
    • 2014
  • This paper suggests a new algorithm to provide low-cost GPS modules with DGPS service, which corrects the error vector in the already-calculated position by projecting range corrections to position domain using the observation matrix calculated from the satellite elevation and azimuth angle in the NMEA GPGSV data. The algorithm reduced the horizontal and vertical RMS error of U-blox LEA-5H module from 1.8m/5.8m to 1.0m/1.4m during the daytime. The algorithm has advantage in improving the performance of low-cost module to that of DGPS receiver by a software update without any correction in hardware, therefore it is expected to contribute to the vitalization of the future high-precision position service infrastructure by reducing the costumer cost and vender risk.

Development of Removal Techniques for PRC Outlier & Noise to Improve NDGPS Accuracy (국토해양부 NDGPS 정확도 향상을 위한 의사거리 보정치의 이상점 및 노이즈 제거기법 개발)

  • Kim, Koon-Tack;Kim, Hye-In;Park, Kwan-Dong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • 제19권2호
    • /
    • pp.63-73
    • /
    • 2011
  • The Pseudorange Corrections (PRC), which are used in DGPS as calibration messages, can contain outliers, noise, and anomalies, and these abnormal events are unpredictable. When those irregular PRC are used, the positioning error gets higher. In this paper, we propose a strategy of detecting and correcting outliers, noise, and anomalies by modeling the changing pattern of PRC through polynomial curve fitting techniques. To validate our strategy, we compared positioning errors obtained without PRC calibation with those with PRC calibration. As a result, we found that our algorithm performs very well; the horizontal RMS error was 3.84 m before the correction and 1.49 m after the correction.