• Title/Summary/Keyword: dietary fatty acid

Search Result 1,046, Processing Time 0.027 seconds

Effect of including n-3/n-6 fatty acid feed sources in diet on fertility and hatchability of broiler breeders and post-hatch performance and carcass parameters of progeny

  • Saber, Seyyed Naeim;Kutlu, Hasan Rustu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.2
    • /
    • pp.305-312
    • /
    • 2020
  • Objective: The present trial was conducted to determine the influence of different dietary fatty acid (omega-3 and omega-6) sources on reproductive performance of female broiler breeders and growth performance and carcass traits of their progeny. Methods: Two hundred and twenty, 25 weeks old Ross-308 male (20) and female (200) broiler breeders were used in the experiment for the period of 6 weeks. All birds were randomly divided into four dietary treatments (containing 2% soybean oil, 2% sunflower oil, 2% flaxseed oil, and 2% fish oil) each with five replicates of one male and ten females. Throughout this experiment hatching performance of broiler breeders, progeny growth performance and carcass parameters were recorded. Results: The results showed that the inclusion of different fatty acid sources in female broiler breeders diet had no significant effects (p>0.05) on number of fertile eggs, post-hatch mortality, and fertility rate. The soybean oil supplemented group had significantly (p<0.05) higher late embryonic mortality compared to other three treatments. Conclusion: It was concluded that inclusion of 2% of different sources of omega-3 and omega-6 fatty acids (especially 2% flax seed oil) in broiler breeders' diet can reduce late embryonic mortality. The other reproductive characteristics of parents and growth and carcass characteristics of progeny remained unaltered by dietary sources of omega-3 and omega-6 fatty acids.

The Plasma Fatty Acid Composition and Cholesterol Levels of Rates Fed Different Sources of $\omega$3 Fatty Acid and Excess DHA during Gestation, Lactation, and Growth

  • Lee, Hongmie;Lee, Juhee;Kim, Jiwon;Park, Haymie
    • Preventive Nutrition and Food Science
    • /
    • v.6 no.3
    • /
    • pp.170-175
    • /
    • 2001
  • This study was designed to investigate the effect of different sources of $\omega$3 fatty acid in the diet with a similar polyunsaturated/saturated (P/S) fatty acid ratio and $\omega$6/$\omega$3 fatty acid ratio as well as excess DHA on the plasma fatty acid composition and cholesterol level of rats. Three experimental diets contained 10% (w/w) dietary lipids. The control diet and one treatment diet were corn oil-based diets with different $\omega$-3 fatty acid sources: perilla (CO) or fish oil (CF), respectively. In order to examine the effect of excess DHA, the other treatment diet (FO) was a fish oil-based diet with corn oil to supply essential fatty acids at the level of 1.8% (w/w) of the diet. Female Sprague Dawley rats were fed the experimental diets for 2 weeks prior to mating and throughout gestation and lactation. Pups were weaned to the same diet of dams at 21 days of age. Plasma fatty acid compositions and cholesterol contents were analyzed for pups at 3th, 7th and 10th week after birth. Plasma DHA concentrations increased significantly as the level of fish oil supplementation increased. Three-, seven- and ten-week old rats fed on CO diet which contained only $\alpha$-lino1enic acid as a $\omega$-3 fatty acid Source had Plasma DHA levels of 4.85%, 3.15% ana 2.47%, respectively, suggesting that rats at this period of development can convert $\alpha$-linolenic acid to DHA. But the ability to form DHA might be limited, since dietary DHA showed to be more effective in raising the plasma level of DHA. There was a significant negative correlation between DHA and cholesterol concentration of the rat plasma at 7th week (r=0.34, p<0.05) and l0th week after birth (r=036, p<0.05), proving the hypocholesterolemic effect of DHA.

  • PDF

Effects of Dietary ${\omega}$-3 and ${\omega}$-6 Polyunsaturated Fatty Acids on Fatty Acid Composition of Immune Organs in Young Chicks (${\omega}$-3 및 ${\omega}$-6계 지방산 첨가 사료의 급여가 어린 병아리에서 면역기관 내 지방산 조성에 미치는 영향)

  • Ahn, Byeong-Ki;Youn, Je-Yeong;Chee, Kyu-Man
    • Korean Journal of Poultry Science
    • /
    • v.30 no.4
    • /
    • pp.289-299
    • /
    • 2003
  • Effects of various combinations of corn oil (CO) and perilla oil (PO) as respective dietary sources of ${\omega}$-6 and ${\omega}$-3 polyunsaturated fatty acids on fatty acid profiles of immune organs were studied in young chicks. Seventy-five 1-day-old male (ISA Brown) chicks were assigned to five treatments with three replications. Semi-purified-type diets containing glucose and soybean meal as major ingredients were added with 8% CO, 6% CO+2% PO, 4% CO+4% PO, 2% CO+6% PO and 8% PO and fed for 7 weeks. There were no significant differences in body weight gain, feed intake and relative weights of liver and immune organs (g/100g weight) among dietary groups. Dietary fatty acid patterns were generally reflected in the fatty acid compositions of all immune organs such as spleen, thymus and bursa of Fabricius. The levels of a-linolenic acid(LNA), eicosapentaenoic acid (EPA) and docosahexaenoic acid in various immune organs increased with increasing levels of perilla oil in the diets, whilet the levels of linoleic acid (LA) and arachidonic acid (AA) decreased. Thymus appeared to have capacity to retain remarkably higher (P<0.05) levels of LA and LNA up to 37 and 22%, respectively, compared to the other organs. Thymic tissue contained ${\omega}$-3 fatty acid and ${\omega}$-6 fatty acid 10~36 times and 3~5 times higher than the other organs, respectively. Spleen tissue was specifically higher (P<0.05) in the levels of AA and EPA and the ratios of AA/LA and EPA/LNA, compared to the other organs, suggesting that the tissue might have high desaturase activity to convert LA or LNA to AA or EPA, respectively. BSA antibody production tended to increase by 18 ~ 32% with higher levels of perilla oil in diet, although the increase was not statistically significant. In conclusion, fatty acid compositions of immune organs very depending on the lipid composition of the diets and each organ appears to respond differently for its fatty acid profile to dietary lipids. Considering AA and EPA are precursors of many important eicosanoids, further studies are required to clarify the responses of the immune organs to the dietary fatty acids.

The Effects of Docosahexaenoic Acid Oil and Soybean Oil on the Expression of Lipid Metabolism Related mRNA in Pigs

  • Liu, B.H.;Wang, Y.C.;Kuo, C.F.;Cheng, W.M.;Shen, T.F.;Ding, Shih-Torng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.10
    • /
    • pp.1451-1456
    • /
    • 2005
  • To study the acute effect of dietary docosahexaenoic acid (DHA, $C_{22:6}$) on the expression of adipocyte determination and differentiation-dependent factor 1 (ADD1) mRNA in pig tissues, weaned, crossbred pigs (28 d of age) were fed with either 10% (on as-fed basis) tallow (high stearic acid), soybean oil (high linoleic acid), or high DHA algal oil for 2 d. The plasma and liver DHA reflected the composition of the diet. The adipose tissue and skeletal muscle DHA did not reflect the diet in the short term feeding. The results also showed that the diet containing 10% algal DHA oil significantly decreased the total plasma cholesterol (39%) and triacylglycerol (TG; 46%) in the pigs. Soybean oil significantly decreased plasma TG (13.7%; p<0.05), but did not have an effect on plasma cholesterol. The data indicate that different dietary fatty acid compositions have different effects on plasma lipids. The ADD1 mRNA was decreased (p<0.05) in the liver of DHA oil-treated pigs compared with the tallow-treated pigs. The diets did not have significant effect on the ADD1 mRNA in adipose tissue. Addition of algal DHA oil in the diet increased acyl CoA oxidase (ACO) mRNA concentration in the liver, suggesting that dietary DHA treatment increases peroxisomal fatty acid oxidation in the liver. However, dietary soybean oil supplementation did not affect mRNA concentrations of ADD1 or ACO in the tissues of pigs. Because ADD1 increases the expression of genes associated with lipogenesis, and ACO is able to promote fatty acid oxidation, feeding DHA oil may change the utilization of fatty acids through changing the expression of ADD1 and ACO. Therefore, feeding pigs with high DHA may lead to lower body fat deposition.

Effects of Dietary Omega-3 Fatty Fish on Serum Insulin and Glucose in Normal Subjects (Omega-3 Fatty Fish의 섭취가 정상인의 Serum Insulin, Glucose에 미치는 영향)

  • 김영선
    • The Korean Journal of Food And Nutrition
    • /
    • v.8 no.4
    • /
    • pp.318-324
    • /
    • 1995
  • The purpose of this study was to Investigate the response of fasting serum glucose and basal insulin to dietary omega-3 fatty fish in normal subjects. Nineteen healthy female volunteer subjects were divided into two groups, depending on fish preference test. Low ap3 fatty acid group for 7 days received a experimental Inlet containing mackeral fish 100g. Calorie intake was 1780 kcal /day. The average 4ally u-3 fatty acid consumption from fish was 3.87g /day (1.03g EPA, 2.849 DHA) . High n-3 fatty acid group was given 7.74g maine u-3 fatty acid (200g mackeral fish) consisting of 2.06g EP45.68g DHA. Calorie intake was 1815 local /day Fasting blond serum glucose, insulin levels were measured at baseline, 7days after experimental diet. In the beginning the levels of fasting serum glucose, basal insulin were not different between both groups. There were no significant changes in fasting serum glucose, insulin levels by experimental diets. These data indicate that marine ar3 fatty acid consumption have no deleterious effect on glycemic control in normal subjects.

  • PDF

Patterns of Dietary Fat Intake by University Female Students Living in Kongju City: Comparisons among Groups Divided by Living Arrangement (공주지역 여대생의 지방 섭취 양상 조사)

  • 김선효
    • Journal of Nutrition and Health
    • /
    • v.30 no.3
    • /
    • pp.286-298
    • /
    • 1997
  • This study was aimed at examining the pattern of dietary fat intake of 120 university female students living in Kongju city in order to provide baseic data for establishing the dietary grideline of desirable fat intake. The subjects were divided into three groups according to living arrangenment ; family home(FH), or dormitory(DM), or self-boarding house(SB). Fat consumption of subjects was surveyed by two-day food records, and profiles of fatty acid and cholesterol taken were calculated based upon the data reported their contents of foods. The result was that mean daily fat intake was 42$\pm$2g for FH, 48$\pm$4g for DM and 41$\pm$3g for SB. The calorie intake by fat was 20.8, 21.5, and 20.4% respectively. The ratio of P/M/S was 1.3/1.7/1 for FH, 1.3/1.6/1 for DM and 1, .5/1.5/1 for SB. And the ratio of n-6/n-3 fatty acid was 5.2/1 for FH, 8.3/1 for DM and 7.2/1 for SB. Daily cholesterol intake was 208$\pm$20mg for FH, 223$\pm$29mg for DM and 251$\pm$27mg for SB. In addition, intake of n-3 fatty acid was 1.2$\pm$0.2g for FH, 0.9$\pm$0.1g for DM and 1.2$\pm$0.2g for DB. Considering the food source of fatty acids, saturated fatty acid and monounsaturated fatty acid were taken primarily from animal foods, especially milk and milk products, and n-6 polyunsaturated fatty acid was taken from vegetable oils and fats. As a major source of n-3 fatty acid, linolenic acid was obtained through vegetable oils and fats, and eicosapentaenoic acid and docosahexaenoic acid were provided by fishes and their products. There patterns of fatty acid intakes did not differ according to living arrangement. The above results showed that intakes of fat and cholesterol, and ratios of P/M/S and n-6/n-3 fatty acid were overall desirable in all groups. However, intake of n-3 fatty acid was low in all groups. Therefore, consumption of perilla oil, legumes and fishes as a source of n-3 fatty acid should be increased by substituting other food source which provide fats and oils because calorie intake by fat was enough in these subject.

  • PDF

Growth Performance, Meat Quality and Fatty Acid Metabolism Response of Growing Meat Rabbits to Dietary Linoleic Acid

  • Li, R.G.;Wang, X.P.;Wang, C.Y.;Ma, M.W.;Li, F.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.8
    • /
    • pp.1169-1177
    • /
    • 2012
  • An experiment was conducted to determine the effects of different amounts of dietary linoleic acid (LA) on growth performance, serum biochemical traits, meat quality, fatty acids composition of muscle and liver, acetyl-CoA carboxylase (ACC) and carnitine palmitoyl transferase 1 (CPT 1) mRNA expression in the liver of 9 wks old to 13 wks old growing meat rabbits. One hundred and fifty 9 wks old meat rabbits were allocated to individual cages and randomly divided into five groups. Animals in each group were fed with a diet with the following LA addition concentrations: 0, 3, 6, 9 and 12 g/kg diet (as-fed basis) and LA concentrations were 0.84, 1.21, 1.34, 1.61 and 1.80% in the diet, respectively. The results showed as follows: the dietary LA levels significantly affected muscle color of LL included $a^*$ and $b^*$ of experimental rabbits (p<0.05). The linear effect of LA on serum high density lipoprotein cholesterol was obtained (p = 0.0119). The saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs) contents of LL decreased and the polyunsaturated fatty acids (PUFAs) content of LL increased with dietary LA increase (p<0.0001). The PUFA n-6 content and PUFA n-3 content in the LL was significantly affected by the dietary LA levels (p<0.01, p<0.05). The MUFAs content in the liver decreased and the PUFAs contents in the liver increased with dietary LA increase (p<0.0001). The PUFA n-6 content and the PUFA n-6/n-3 ratio in the liver increased and PUFA n-3 content in the liver decreased with dietary LA increase (p<0.01). The linear effect of LA on CPT 1 mRNA expression in the liver was obtained (p = 0.0081). In summary, dietary LA addition had significant effects on liver and muscle fatty acid composition (increased PUFAs) of 9 wks old to 13 wks old growing meat rabbits, but had little effects on growth performance, meat physical traits and mRNA expression of liver relative enzyme of experimental rabbits.

Biological Significance of Essential Fatty Acids/Prostanoids/Lipoxygenase-Derived Monohydroxy Fatty Acids in the Skin

  • Ziboh, Vincent-A.;Cho, Yunhi;Mani, Indu;Xi, Side
    • Archives of Pharmacal Research
    • /
    • v.25 no.6
    • /
    • pp.747-758
    • /
    • 2002
  • The skin displays a highly active metabolism of polyunsaturated fatty acids (PUFA). Dietary deficiency of linoleic acid (LA), an 18-carbon (n-6) PUFA, results in characteristic scaly skin disorder and excessive epidermal water loss. Although arachidonic acid (AA), a 20-carbon (n6) PUFA, is metabolized via cyclooxygenase pathway into predominantly prostaglandin $E_2(PGE_2)$ and $PGF_{2{\alpha}}$, the metabolism of AA via the 15-lipoxygenase (15-LOX) pathway, which is very active in skin epidermis and catalyzes the transformation of M into predominantly 15S-hydroxyeicosatetraenoic acid (15S-HETE). Additionally, the 15-LOX also metabolizes the 18-carbon LA into 13S-hydroxyoctadecadienoic acid (13S-HODE), respectively. Interestingly, 15-LOX catalyzes the transformation of $dihomo-{\gamma}-linolenic$ acid (DGLA), derived from dietary gamma-linolenic acid, to 15S-hydroxyeicosatrienoic acid (15S-HETrE). These monohydroxy fatty acids are incorporated into the membrane inositol phospholipids which undergo hydrolytic cleavage to yield substituted-diacylglycerols such as 13S-HODE-DAG from 13S-HODE and 15S-HETrE-DAG from 15S-HETrE. These substituted-monohydroxy fatty acids seemingly exert anti-inflammatory/antiproliferative effects via the modulation of selective protein kinase C as well as on the upstream/down-stream nuclear MAP-kinase/AP-1/apoptotic signaling events.

Effect of Dietary Protein Levels on Composition of Odorous Compounds and Bacterial Ecology in Pig Manure

  • Cho, Sungback;Hwang, Okhwa;Park, Sungkwon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.9
    • /
    • pp.1362-1370
    • /
    • 2015
  • This study was performed to investigate the effect of different levels of dietary crude protein (CP) on composition of odorous compounds and bacterial communities in pig manure. A total of 48 male pigs (average initial body weight 45 kg) fed diets containing three levels of dietary CP (20%, 17.5%, and 15%) and their slurry samples were collected from the pits under the floor every week for one month. Changes in composition of odorous compounds and bacterial communities were analyzed by gas chromatography and 454 FLX titanium pyrosequencing systems, respectively. Levels of phenols, indoles, short chain fatty acid and branched chain fatty acid were lowest (p<0.05) in CP 15% group among three CP levels. Relative abundance of Bacteroidetes phylum and bacterial genera including Leuconostoc, Bacillus, Atopostipes, Peptonphilus, Ruminococcaceae_uc, Bacteroides, and Pseudomonas was lower (p<0.05) in CP 15% than in CP 20% group. There was a positive correlation (p<0.05) between odorous compounds and bacterial genera: phenol, indole, iso-butyric acid, and iso-valeric acid with Atopostipes, p-cresol and skatole with Bacteroides, acetic acid and butyric acid with AM982595_g of Porphyromonadaceae family, and propionic acid with Tissierella. Taken together, administration of 15% CP showed less production of odorous compounds than 20% CP group and this result might be associated with the changes in bacterial communities especially whose roles in protein metabolism.

A Study on Fatty Acid Profiles of Eggs in Older Laying Hens fed Diets Supplemented with Bentonite (벤토나이트를 산란노계 사료에 첨가시 계란의 지방산조성에 관한 연구)

  • Choi, In Hag
    • Journal of Environmental Science International
    • /
    • v.27 no.5
    • /
    • pp.341-344
    • /
    • 2018
  • This study was conducted to determine the effects of dietary bentonite supplementation on the fatty acid profiles of eggs in older laying hens. A total of 90 Hy-line Brown layers, 74 weeks of age, were confined in 6 wire cages and then assigned randomly to two groups to receive one of the two diets (3 replicates of 15 older layers each) containing 0 and 0.2% bentonite for 4 weeks. After the 4-week feeding trial, no remarkable differences in individual fatty acid, saturated fatty acid (SFA), unsaturated fatty acid (UFA), and mono unsaturated fatty acid (MUFA) levels were found. However, linoleic acid, docosahexaenoic acid, and poly unsaturated fatty acid (PUFA) and UFA/SFA ratio were influenced by 0.2% bentonite. In conclusion, supplementation with 0.2% bentonite improved the profiles of PUFA more than those of SFA, UFA, and MUFA inthe eggs of the older laying hens.