• 제목/요약/키워드: dielectric breakdown strength

검색결과 252건 처리시간 0.024초

폴리에틸렌의 절연파괴와 그의 온도 및 두께의존성 (A Study on Thickness and Temperature Dependence of Dielectric Breakdown in Polyethylene)

  • 김점식;이종범;정우교;김미향;박대희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 C
    • /
    • pp.1388-1390
    • /
    • 1995
  • The characteristic of dielectric breakdown in solid insulating material dominates the reliability and safety of power equipment and affects directly to its life. In this point of view, the thickness and temperature dependence of dielectric breakdown strength and mechanism of dielectric breakdown in low density polyethylene which has been employed widely as insulating material have been technically reviewed by examinations of thermal property. The dielectric breakdown strength depending on its thickness was measured 2.6[MV/cm] at the thickness of 20[${\mu}m$] and 1.9[MV/cm] at the thickness of 75[${\mu}m$] based on ambient temperature of 30[$^{\circ}C$]. It is shown the temperature dependence that dielectric breakdown strength decreases in linear as the thickness increases. The dielectric breakdown strength depending on temperature was measured 2.6[MV/cm] at the temperature of 30[$^{\circ}C$], 1.6[MV/cm] at 60[$^{\circ}C$] and 1.3[MV/cm] at 90[$^{\circ}C$] based on the thickness of 20[${\mu}m$]. As the ambient temperature increases, the temperature dependence is shown that a very large drop is occurred up to temperature of 60[$^{\circ}C$] and a very small drop is discovered over 60[$^{\circ}C$].

  • PDF

MgO를 첨가한 에폭시 나노 컴퍼지트의 절연파괴강도 온도의존성 (Temperature Dependence on dielectric breakdown strength of Epoxy Nano-Composites depending on MgO)

  • 정인범;한현석;이영상;조경순;신종열;홍진웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.48-48
    • /
    • 2010
  • In this paper, we have investigated temperature dependence of dielectric breakdown voltage at epoxy with added nano-filler(MgO), which is used as a filler of epoxy additives for HVDC(high voltage direct current) submarine cable insulating material with high thermal conductivity and restraining tree to improve electrical properties of epoxy resin in high temperature region. In order to find dispersion of the specimen, the cross sectional area of nano-composite material is observed by using the SEM(Scanning Electron Microscope) and it is conformed that each specimen is evenly distributed without the cohesion. As a result, it is confirmed that the strength of breakdown of all specimen at 50 [$^{\circ}C$] decreased more than that of the dielectric breakdown strength at room temperature. When temperature increases from 50 [$^{\circ}C$] to 100 [$^{\circ}C$], we have confirmed that breakdown strength of virgin specimen decreases, but specimens with added MgO show constant dielectric breakdown strength.

  • PDF

A study on DC breakdown strength due to variation of specimen shape of epoxy/SiO$_{2}$ compound material treated with silane coupling agent

  • 김명호;김재환;김경환;박찬옥;손인환;박재준
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제5권4호
    • /
    • pp.393-399
    • /
    • 1992
  • In order to increase the coupling strength between bisphenol-A type epoxy resin and filler SiO$_{2}$ it was treated to filler with silane coupling agent[KBM-603]. To observe how silane coupling agent effects on dielectric breakdown strength of Epoxy/SiO$_{2}$ compound material, specimens of eight type were made like following. (A-1, A-2), (B-1, B-2), (C-1, C-2), (D-1, D-2) (see 2-2. Specimen) Specimen treated with silane coupling agent had always bigger dielectric breakdown strength than non-treated specimen. Under the influence of silane coupling agent, increment ratio of dielectric breakdown strength at specimen manufactured by hand drill was very bigger than that of specimen inserted spherical electrode. Therefore, as the specimen shape was varied, it was studied on effect that silane coupling agent affects on dielectric breakdown strength of Epoxy/SiO$_{2}$ compound material.

  • PDF

거칠기에 따른 반도전-절연 계면층에서 접착특성과 절연성능 (Adhesion and Electrical Performance by Roughness on Semiconductive-Insulation Interface Layer of Silicone Rubber)

  • 이기택;황선묵;홍주일;허창수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.1
    • /
    • pp.78-81
    • /
    • 2004
  • In this paper, the effect of adhesion properties of semiconductive-insulating interface layer of silicone rubber on electrical properties was investigated. Surface structure and adhesion of semiconductive silicon rubber by surface asperity was obtained from SEM and T-peel test. In addition, ac breakdown test was carried out for elucidating the change of electrical property by roughness treatment. From the results, Adhesive strength of semiconductive-insulation interface was increased with surface asperity. Dielectric breakdown strength by surface asperity decreased than initial Specimen, but increased from Sand Paper #1200. According to the adhesional strength data unevenness and void formed on the silicone rubber interface expand the surface area and result in improvement of adhesion. Before treatment Sand Paper #1200, dielectric breakdown strength was decreased by unevenness and void which are causing to have electric field mitigation small. After the treatment, the effect of adhesion increased dielectric breakdown strength. It is found that ac dielectric breakdown strength was increased with improving the adhesion between the semiconductive and insulating interface.

  • PDF

전기 기기용 봉지 및 함침 에폭시 복합 재료의 내열성 및 절연파괴 특성 개선에 관한 연구 (A study on the improvement of thermostability and dielectric breakdown strength for packaging and impregnating epoxy composite materials for electrical machines and apparatus)

  • 김명호;김재환
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제7권6호
    • /
    • pp.527-533
    • /
    • 1994
  • In this study, it was studied on dielectric breakdown strength and thennostability properties due to the structure variation of matrix resin and treatment of coupling agent of epoxy insulating materials. The interpenetrating network structure was formed by simultaneous heating curing the epoxy resin with single network structure and the methacrylic acid resin. Also inner structure was observed and the glass transition temperature was measured on these three type specimens. Dielectric breakdown properties were investigated by applying DC, AC and impulse voltage. As a result, the glass transition temperature and the dielectric breakdown strength of specimen with interpenetrating network structure was more higher than another two type specimens.

  • PDF

Epoxy/SiO$_2$복합재료의 계면 처리 효과에 따른 절연 파괴 특성 개선에 관한 연구 (A Study on Improvement of Electric Breakdown Properties due to Interface Treatment Effect of Epoxy/SiO$_2$ Composite Materials)

  • 김명호;박창옥;박재준;김경환;김재환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1990년도 추계학술대회 논문집
    • /
    • pp.102-104
    • /
    • 1990
  • In this paper, we studied and investigated as to temperature dependence of dielectric breakdown properties, and the dielectric breakdown properties, and deterioration-proof properties due to interface treatment effect. In the result, we knew that temperature dependence of dielectric breakdown strength due to filler content was decreased, identified that D.C. dielectric breakdown strength was improved at the filler content 50[%]. When the D.C. voltage was applied to the non silane and silane treated specimens deal with mechanical deterioration, the dielectric breakdown strength was improved at the 150[%].

충진재 함량 변화에 따른 에폭시 복합재료의 흡수율과 직류 절연파괴강도의 변화 (The variation of water absorption rate and DC dielectric breakdown strength of Epoxy composites due to filler content)

  • 이덕진;김탁용;신성권;김명호;김경환;김재환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 E
    • /
    • pp.2349-2351
    • /
    • 1999
  • In this paper, the variable absorption rates and DC dielectric breakdown strength of epoxy composites were measured at boiling absorption condition in order to observe the influences of moisture in out door use. Also, in order to improve withstand voltage properties at moisture absorbtion condition. IPN (interpenetrating polymer network) method which had been already reported, was introduced and the influence was investigated. As a result, it was confirmed that the moisture absorption rate was increased and DC dielectric breakdown strength was degraded with boiling time and filler content increasing. On the other hand, it was confirmed that moisture absorption rate and DC dielectric breakdown strength degrading rate were lowered by the improvement of adhesion strength In IPN specimens.

  • PDF

Electrical Insulation Properties of Nanocomposites with SiO2 and MgO Filler

  • Jeong, In-Bum;Kim, Joung-Sik;Lee, Jong-Yong;Hong, Jin-Woong;Shin, Jong-Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권6호
    • /
    • pp.261-265
    • /
    • 2010
  • In this paper, we attempt to improve the electrical characteristics of epoxy resin at high temperature (above $80^{\circ}C$) by adding magnesium oxide (MgO), which has high thermal conductivity. Scanning electron microscopy (SEM) of the dispersion of specimens with added MgO reveals that they are evenly dispersed without concentration. The dielectric breakdown characteristics of $SiO_2$ and MgO nanocomposites are tested by measurements at different temperatures to investigate the filler's effect on the dielectric breakdown characteristics. The dielectric breakdown strength of specimens with added $SiO_2$ decreases slowly below $80^{\circ}C$ (low temperature) but decreases rapidly above $80^{\circ}C$ (high temperature). However, the gradient of the dielectric breakdown strength of specimens with added MgO is slow at both low and high temperatures. The dielectric breakdown strength of specimens with 0.4 wt% $SiO_2$ is the best among the specimens with added $SiO_2$, and that of specimens with 3.0 wt% and 5.0 wt% MgO is the best among those with added MgO. Moreover, the dielectric strength of specimens with 3.0 wt% MgO at high temperatures is approximately 53.3% higher than that of specimens with added $SiO_2$ at $100^{\circ}C$, and that of specimens with 5.0 wt% of MgO is approximately 59.34% higher under the same conditions. The dielectric strength of MgO is believed to be superior to that of $SiO_2$ owing to enhanced thermal radiation because the thermal conductivity rate of MgO (approximately 42 $W/m{\cdot}K$) is approximately 32 times higher than that of $SiO_2$ (approximately 1.3 $W/m{\cdot}K$). We also confirmed that the allowable breakdown strength of specimens with added MgO at $100^{\circ}C$ is within the error range when the breakdown probability of all specimens is 40%. A breakdown probability of up to 40% represents a stable dielectric strength in machinery and apparatus design.

DC 절연파괴 특성을 이용한 Epoxy 복합체의 절연 신뢰도 평가 (Evaluation of Insulating Reliability in Epoxy Composites by DC Dielectric Breakdown Properties)

  • 임중관;박용필;김정호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.92-95
    • /
    • 2001
  • The dielectric breakdown of epoxy composites used for transformers was experimented and then its data were simulated by Weibull distribution probability. First of all, speaking of dielectric breakdown properties, the more hardener increased the stronger breakdown strength at low temperature because of cross-linked density by the virtue of ester radical. The breakdown strength of specimens with filler was lower than it of non-filler specimens because it is believed that the adding filler forms interface and charge is accumulated in it, therefore the molecular motility is raised and the electric field is concentrated. In the case of filled specimens with treating silane, the breakdown strength become much higher Finally, from the analysis of weibull distribution, it was confirmed that as the allowed breakdown probability was given by 0.1[%], the applied field value needed to be under 21.5 [Mv/cm].

  • PDF

절연파괴 특성을 이용한 Epoxy 복합체의 전기적 열화 분석 (Analysis of Electrical Degradation in Epoxy Composites by Dielectric Breakdown Properties)

  • 최철호;박용필;임중관
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.414-419
    • /
    • 2002
  • The dielectric breakdown of epoxy composites used for transformers was experimented and then its data were simulated by Weibull distribution probability. First of all, speaking of dielectric breakdown properties, the more hardener increased the stronger breakdown strength at low temperature because of cross-linked density by the virtue of ester radical. The breakdown strength of specimens with filler was lower than it of non-filler specimens because it is believed that the adding filler forms interface and charge is accumulated in it, therefore the molecular motility is raised and the electric field is concentrated. In the case of (idled specimens with treating silane, the breakdown strength become much higher Finally, from the analysis of weibull distribution, it was confirmed that as the allowed breakdown probability was given by 0.1[%], the applied field value needed to be under 21.5 MV/cm.

  • PDF