• Title/Summary/Keyword: dicyclopentadiene resin

Search Result 14, Processing Time 0.023 seconds

Influence of Dicyclopentadiene Resin on Abrasion Behavior of Silica-Filled SBR Compounds Using Different Abrasion Testers

  • Eunji Chae;Seong Ryong Yang;Seok Hyun Cho;Sung-Seen Choi
    • Elastomers and Composites
    • /
    • v.58 no.3
    • /
    • pp.103-111
    • /
    • 2023
  • The abrasion resistances of silica-filled styrene-butadiene rubber (SBR) compounds prepared with and without dicyclopentadiene resin (SBR-R and SBR-0, respectively) were studied using four different abrasion testers, namely cut and chip (CC), Lambourn, DIN, and laboratory abrasion tester (LAT100). The effect of the resin on the abrasion behavior was elucidated by analyzing the morphologies and size distributions of wear particles. All the wear particles had rough surfaces, but those obtained in the Lambourn abrasion test exhibited relatively smooth surfaces. The size distributions of the wear particles showed different trends depending on the abrasion tester and the rubber compound; however, most of the wear particles were larger than 1000 ㎛. The SBR-R sample showed a wide range of particle sizes (from 63 ㎛) in the LAT100 abrasion test and majority of the wear particles were 500-1000 ㎛, whereas the SBR-0 sample had the most distribution of larger than 1000 ㎛. The abrasion rates of SBR-0 sample were lower than those of the SBR-R sample for the CC and LAT100 abrasion tests, but the Lambourn abrasion test result showed the opposite trend. Addition of the resin influenced the abrasion behavior, however the effect varied depending on the type of abrasion tests.

Manufacturing and Numerical Analysis of Glass Fiber Chopped Strand Mat Reinforced p-DCPD Composites Processed by S-RIM (S-RIM을 이용한 Glass Fiber Chopped Strand Mat 강화 p-DCPD 복합재료 제작 및 수치해석을 통한 공정 시간 예측)

  • YOO, HYEONGMIN;UM, MOONKWANG;CHOI, SUNGWOONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.629-634
    • /
    • 2019
  • Dicyclopentadiene is a low viscosity resin which forms a poly-dicyclopentadiene rapidly through ring opening metathesis polymerization (ROMP). This poly-dicyclopentadiene has outstanding properties of low-temperature, water and impact resistances. Due to these advantages, military and offshore structures try to apply the DCPD composites by using liquid composite molding process. In this study, 14%, 38% volume fraction fiber glass strand mat reinforced p-DCPD composites processed by structural reaction injection molding (S-RIM) which has resin-catalsyt mixing head and glass fiber preform in the mold. Additionally, S-RIM numerical analysis was conducted to predict the process time depending on fiber volume fraction and mold temperature. The process time is shorter when it has the lower fiber volume fraction or the higher mold temperature. At higher mold temperature, it is necessary to set the maximum mold temperature considering the resin curing time.

A Study on the Filmic Properties of Polypropylenen by Modification of Hydrogenated Hydrocarbon Resin (수첨석유수지 개질에 의한 폴리프로필렌 필름의 특성 연구)

  • Chun, Bonggeun;Sung, Ickkyeung;Lee, Jungjoon
    • Journal of Adhesion and Interface
    • /
    • v.14 no.4
    • /
    • pp.192-196
    • /
    • 2013
  • In this study, a series of bi-axially oriented films based on homo polypropylene (PP) and hydrocarbon resin (HCR) modified PP were prepared to investigate their mechanical properties, optical properties, permeability to gases and water vapors and shrinkage ratio. Hydrogenated dicyclopentadiene (DCPD) resin and hydrogenated C9 resin were used as HCR in this study. Bi-axially oriented polypropylene (BOPP) films made with PP/HCR blends showed better mechanical properties (higher Young's modulus), better optical properties (lower haze), lower permeability to gases and water vapors and increased shrinkage ratio than BOPP films made with homo-PP. Hydrogenated DCPD resin and hydrogenated C9 resin showed similar contribution to the improvement in mechanical properties and optical properties of BOPP films, but there are a differences in permeability to gases and water vapors and shrinkage ratio.

Synthesis and Application of Sorbic Acid Grafted Hydrogenated Dicyclopentadiene Hydrocarbon Resin (소르빅산 변성 수소첨가 DCPD계 석유수지의 합성 및 응용)

  • Kong, Won Suk;Park, Jun Hyo;Yoon, Ho Gyu;Lee, Jae Wook
    • Journal of Adhesion and Interface
    • /
    • v.16 no.1
    • /
    • pp.29-34
    • /
    • 2015
  • Hydrocarbon resins, which are defined as low molecular weight, amorphous, and thermoplastic polymers, are widely used as tackifier for various types of adhesives, as processing aids in rubber compounds, and as modifiers for plastics polymers such as isotactic polypropylene. Typically, hydrocarbon resins are non-polar, and thus highly compatible with non-polar rubbers and polymer. However, they are poorly compatible with polar system, such as acrylic copolymer, polyurethanes, and polyamides. Moreover, recently the raw materials of hydrocarbon resin from naphtha cracking had been decreased because of light feed cracking such as gas cracking. To overcome this problem, in this study, novel hydrocarbon resins were designed to have a highly polar chemical structure which material is sustainable. And, it was successfully synthesized by Diels-Alder reaction of dicyclopentadiene monomer and sorbic acid from blueberry as renewable resources. Acrylic resins were formulated with various tackifiers solution including sorbic acid grafted hydrogenated dicyclopentadiene hydrocarbon resins in acrylic adhesive and rolling ball tack, loop tack, $180^{\circ}$ peel adhesion strength, and shear adhesion strength were measured. The properties depend on the softening point and polar content of tackifiers.

Effect of Composition of EVA-based Hot-Melt Adhesives on Adhesive Strength (EVA계 핫멜트 접착제의 조성이 접착력에 미치는 영향)

  • Lee, Jung-Joon;Song, Yu-Hyun;Lim, Sang-Kyun;Park, Dae-Soon;Sung, Ick-Kyung;Chin, In-Joo
    • Journal of Adhesion and Interface
    • /
    • v.11 no.4
    • /
    • pp.155-161
    • /
    • 2010
  • A series of ethylene vinyl acetate (EVA) based hot melt adhesives containing different types and compositions of tackifier resins were prepared to investigate their rheological behavior and T-peel adhesion strength on polyurethane (PU) elastomeric sheets. C5 aliphatic hydrocarbon resin (C5 resin), C9 aromatic hydrocarbon resin (C9 resin), hydrogenated dicyclopentadiene resin ($H_2$-DCPD resin), and dicyclopentadiene and acrylic monomer copolymer resin (DCPD-acrylic resin) were used as the tackifiers for the hot melt adhesives. To determine the polarity of the tackifiers, their oxygen contents were analyzed, and the DCPDacrylic resin was found to contain an oxygen content higher than the other tackifiers. Only the DCPD-acrylic resin showed complete miscibility with EVA and the homogeneous phase of the hot melt adhesive blends at all compositions. The T-peel adhesion strength between the hot melt adhesives and polyurethane elastomeric sheets was mainly affected by the polarity of the tackifier resins in the hot melt adhesives, rather than by the storage moduli, G', of the hot melt adhesives themselves.

A Study on Adhesion Performance of Styrene-Block-Copolymer Based Hot Melt Pressure Sensitive Adhesives with Dicyclopentadiene Based Hydrogenated Hydrocarbon Resins (수첨 DCPD계 석유수지를 이용한 SBCs계 핫멜트점착제의 접착성능 연구)

  • Shim, Jaeho;Kim, Yunho;Lee, Jungjoon
    • Journal of Adhesion and Interface
    • /
    • v.15 no.4
    • /
    • pp.145-150
    • /
    • 2014
  • Dicyclopentadiene (DCPD)-based hydrocarbon resins are widely used as tackifiers in many applications. In particular, hydrogenated DCPD-based hydrocarbon resins are widely used in premium hot-melt-type adhesives such as hot melt adhesives (HMAs) and/or hot melt pressure-sensitive adhesives (HMPSAs), because are water-white in color and possess excellent stability to light and heat. This article discusses the adhesive performance of various hydrogenated DCPD resins when they are used as tackifiers in styrene-block-copolymer (SBC)-based HMPSAs. This article shows the correlation between the characteristics of tackifiers and the adhesive performance of SBC-based HMPSAs. The higher the softening point of the tackifier, the higher is the $T_g$, softening point, and crossover temperature of the PSAs. High aromatic H wt% content reduces the high-temperature resistance of PSAs, as suggested by the decrease in the crossover temperature and softening point of the PSAs.

Characterization of Dicyclopentadiene and 5-Ethylidene-2-norbornene as Self-healing Agents for Polymer Composite and Its Microcapsules

  • Lee, Jong-Keun;Hong, Sun-Ji;Xing Liu;Yoon, Sung-Ho
    • Macromolecular Research
    • /
    • v.12 no.5
    • /
    • pp.478-483
    • /
    • 2004
  • Two different diene monomers [dicyclopentadiene (DCPD) and 5-ethylidene-2-norbornene (ENB)] as self-healing agents for polymeric composites were microencapsuled by in situ polymerization of urea and formaldehyde. We obtained plots of the storage modulus (G') and tan $\delta$ as a function of cure time by using dynamic mechanical analysis to investigate the cure behavior of the unreacted self-healing agent mixture in the presence of a catalyst. Glass transition temperatures (T$\_$g/) and exothermic reactions of samples cured for 5 and 120 min in the presence of different amounts of the catalyst were analyzed by differential scanning calorimetry. Of the two dienes, ENB may have advantages as a self-healing agent because, when cured under same conditions as DCPD, it reacts much faster in the presence of a much lower amount of catalyst, has no melting point, and produces a resin that has a higher value of T$\_$g/. Microcapsules containing the healing agent were successfully formed from both of the diene monomers and were characterized by thermogravimetric analysis. Optical microscopy and a particle size analyzer were employed to observe the morphology and size distribution, respectively, of the microcapsules. The microcapsules exhibited similar thermal properties as well as particle shapes and sizes.

Jet-Fuel-Resistant PVC Sealant Containing a Polyester Plasticizer (폴리에스터 가소제를 사용한 내제트유성 PVC계 실란트)

  • Nam, Byeong-Uk;Kim, Seog-Jun
    • Elastomers and Composites
    • /
    • v.38 no.4
    • /
    • pp.342-353
    • /
    • 2003
  • This work is about the development of jet-fuel resistant PVC sealant using a polyester plasticizer. PVC copolymer was compounded with adipic acid glycol(Songcizer P-3000) or DOP plasticizers. Fuel-immersed and non-immersed penetration, solubility, flow, and elongation by tensile adhesion of PVC compounds were measured. Penetration increase by fuel immersion and solubility of PVC compounds with adipic acid glycol polyester plasticizer were smaller than those of PVC compounds with DOP plasticizer. Elongation by tensile adhesion test of PVC compound containing 500 phr of Songcizer P-3000 decreased proportionally to the content of DCDP (dicyclopentadiene) base petroleum resin adhesion promoter. Calcium carbonate($CaCO_3$) filler inhibited the diffusion of fuel in all the PVC compounds and decreased the solubility of PVC compounds containing Songcizer P-3000.

An Improved Manufacturing Method of p-Dicyclopentadiene (DCPD) using Tungsten Type Catalyst in Air Condition (대기 조건에서 경화가 가능한 텅스텐계 p-DCPD의 개선된 성형 방법)

  • Kwon, Dong-Jun;Shin, Pyeong-Su;Kim, Jong-Hyun;Park, Joung-Man
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.216-222
    • /
    • 2016
  • Ring-opening metathesis polymerization of p-dicyclopentadiene (DCPD) can be performed using the tungsten type catalyst. This reaction usually progresses in nitrogen condition, because the catalysts are extremely sensitive in air condition. To solve this problem, DCPD resin with tungsten (W) was cured using hot press after stirring of DCPD A and B liquid in air condition. Mechanical properties of DCPD were improved by reducing microvoid occurrence successfully by using hot press method. It might be because hot press could provide sufficient press on DCPD specimen. Addition of catalyst was not effective for the curing of resin in a short time. During polymerization, pressure and temperature had a great influence on the mechanical properties of DCPD.

Manufacturing Process of Microcapsules for Autonomic Damage Repair of Polymeric Composites (폴리머 복합재의 자가치료용 마이크로캡슐 제조공정 연구)

  • ;;;;M.R. Kessler;S.R. White
    • Composites Research
    • /
    • v.15 no.2
    • /
    • pp.32-39
    • /
    • 2002
  • This study focused on the introduction of processing procedure for microcapsules loaded with the healing agent and then microcapsules with the healing agent were manufactured by experiments. The DCPD (dicyclopentadiene) was used for the healing agent and the shell of microcapsules was consisted of urea-formaldehyde resin. The magnitude and the site distribution of microcapsules were measured by a particle size analyzer using laser diffraction technique. Thermal analysis was conducted by using a DSC fur the healing agent, microcapsules without the healing agent, and microcapsules with the healing agent. Also thermal stability was investigated by using a TGA under continuous and isothermal heating conditions far the healing agent, microcapsules without the healing agent, microcapsules with the healing agent. According to the results. microcapsules with the healing agent were verified to be so thermally stable that the healing agent could not evaporate until the shell of microcapsules were burned.