• Title/Summary/Keyword: dicom

Search Result 253, Processing Time 0.023 seconds

Implementation of PACS using PDA System on Medical Images (PDA기반 의료영상의 전송시스템 구현)

  • Ji, Yeon-Sang;Dong, Kyung-Rae;Kim, Chang-Bok
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.4
    • /
    • pp.247-253
    • /
    • 2009
  • PACS(Picture archiving communication system) is a system that enables medical images such as X -ray, CT, MRI, PET to be stored electronically viewed on computer screens so that doctors and other authorized people can access search the information as needed. But if they are not in hospital area for example on holiday or at night, that are not able to access the PACS system instantly. We have to solve this problem for more efficient patient care. So we try to suggest a method that use the PDA system that wireless LAN and CDMA cellular phone are equipped. This system may help to access easier to PACS system regardless of the location and can also attribute the development of telemedicne.

Implement of Integration Compression Environment System Compressing Medical Images (의료영상 압축을 위한 통합압축환경시스템 구현)

  • 추은형;박무훈
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.1
    • /
    • pp.142-148
    • /
    • 2003
  • We compress medical images in order to solve problems both of request of storage mediums and of a low network speed. In this paper, integration compression environment has been developed for unity of various compression methods. Various compression methods that are implemented by integration compression environment, RLC, Lossless JPEG, and JPEG, comply with the DICOM 3.0. A compression method using DWT is implemented at it. And a unit method of Lossless compression method and lossy compression method is designed to improve images quality and to progress compression ratio. Diverse medical images can be compressed by each compression method. And integration compression environment is operated together database so that information of medical images is administered.

Positive Research of Client-Server Interlock System for m-PACS Rehalibitated Service in Wire less Mobile Environment (무선이동환경에서 m-PACS 재활지원 서비스를 위한 클라이언트-서버 연동시스템의 실증적연구)

  • Kim, Whi-Young;Choe, Jin-Yeong;Park, Seong-Jun;Kim, Jin-Yeong;Park, Seong-Jun;Kim, Hui-Je
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2169-2170
    • /
    • 2006
  • J2ME service technology has advantage that can embody independent and, more soft system in DICOM 3.0 and medicine reflex administration server, client's OS that is medical treatment reflex standard in radio Internet. Also, intranet that do web basedspread, and develop by system that can alternate existent client-server structure rapidly. Specially, posibility of improvement is much because is connecting being limited in internet environment that medical equipment and information system of various kinds of machine are wire in medical institution and so on. Because do medical treatment reflex transmission module development applying DICOM technology and filtering techniques of "m-PACS Rehalibitated " in this research, existence, by interlock in radio usable Mobile reflex conversion system design and embody. That is, patient's information which is stored to various systems to be transmited and can give big help in medical examination and treatment to reflex client without being wooed doctor's interpretation result and so on in place through environment to be radish tentacle bar see

  • PDF

Numerical Study on the Blood Flow in the Abdominal Artery with Real Geometry (실제 형상을 통한 복부대동맥의 혈류 유동에 대한 수치적 연구)

  • Kang, Han-Young;Kim, Min-Cheol;Hong, Yi-Song;Lee, Chong-Sun;Lee, Jong-Min;Kim, Charn-Jung
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.747-752
    • /
    • 2003
  • Many clinical studies have suggested that the blood flow in ideal geometry is involved in the development of atherosclerosis. This study simulated blood flow in the abdominal artery with real geometry to investigate MWSS(mean wall shear stress), AWSS(amplitude of wall shear stress) and OSI(oscillator shear index). The calculation grid for the real geometry was constructed by extracting the surface of arterial wall from CT(Computed Tomography) or MRI(Magnetic Resonance Imaging) sheets called as DICOM (Digital Imaging and Communications in Medicines). The calculated MWSS, AWSS and OSI are much different from those of ideal geometry calculation. The MWSS increased while the AWSS decreased. Many shear forces are related to shapes of gradient. This paper will give clinical datum where the MWSS, AWSS and OSI are strong or weak. The hemodynamic analysis based on real geometry can provide surgeons with more reliable information about the effect of blood flow.

  • PDF

Study For Watermarking Technique In Medical Image (의료영상에서의 워터마킹 기법에 관한 연구)

  • 남기철;박무훈
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.348-351
    • /
    • 2002
  • Recently, the medical imaging field has been digitalized by the development of computer science and digitization of the medical devices. There are needs of the medical imaging database service and long term storage today because of the installation of PACS system following DICOM standards, telemedicine and etc. and ,also, the illegal distortion of the medical information, data authentication and copyright are being happened. In this paper, we propose watermarking technique as a method which can protect private informations and medical imaging from geometric distortion. Because many watermarks for images are sensitive to geometric distortion, we present a algorithm that is insensitive to RST distortion in medical image. we observed the robustness against several of the signal processing and attacks in medical imaging field by embedding watermark after making a region which is insensitive to RST distortion by using FFT and LPM transformation.

  • PDF

A New Robust Blind Crypto-Watermarking Method for Medical Images Security

  • Mohamed Boussif;Oussema Boufares;Aloui Noureddine;Adnene Cherif
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.3
    • /
    • pp.93-100
    • /
    • 2024
  • In this paper, we propose a novel robust blind crypto-watermarking method for medical images security based on hiding of DICOM patient information (patient name, age...) in the medical imaging. The DICOM patient information is encrypted using the AES standard algorithm before its insertion in the medical image. The cover image is divided in blocks of 8x8, in each we insert 1-bit of the encrypted watermark in the hybrid transform domain by applying respectively the 2D-LWT (Lifting wavelet transforms), the 2D-DCT (discrete cosine transforms), and the SVD (singular value decomposition). The scheme is tested by applying various attacks such as noise, filtering and compression. Experimental results show that no visible difference between the watermarked images and the original images and the test against attack shows the good robustness of the proposed algorithm.

The Design of Mobile Medical Image Communication System based on CDMA 1X-EVDO for Emergency Care (CDMA2000 1X-EVDO망을 이용한 이동형 응급 의료영상 전송시스템의 설계)

  • Kang, Won-Suk;Yong, Kun-Ho;Jang, Bong-Mun;Namkoong, Wook;Jung, Hai-Jo;Yoo, Sun-Kook;Kim, Hee-Joung
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.53-55
    • /
    • 2004
  • In emergency cases, such as the severe trauma involving the fracture of skull, spine, or cervical bone, from auto accident or a fall, and/or pneumothorax which can not be diagnosed exactly by the eye examination, it is necessary the radiological examination during transferring to the hospital for emergency care. The aim of this study was to design and evaluate the prototype of mobile medical image communication system based on CDMA 1X EVDO. The system consists of a laptop computer used as a transmit DICOM client, linked with cellular phone which support to the CDMA 1X EVDO communication service, and a receiving DICOM server installed in the hospital. The DR images were stored with DICOM format in the storage of transmit client. Those images were compressed into JPEG2000 format and transmitted from transmit client to the receiving server. All of those images were progressively transmitted to the receiving server and displayed on the server monitor. To evaluate the image quality, PSNR of compressed image was measured. Also, several field tests had been performed using commercial CDMA2000 1X-EVDO reverse link with the TCP/IP data segments. The test had been taken under several velocity of vehicle in seoul areas.

  • PDF

A Study on the Development Direction of Medical Image Information System Using Big Data and AI (빅데이터와 AI를 활용한 의료영상 정보 시스템 발전 방향에 대한 연구)

  • Yoo, Se Jong;Han, Seong Soo;Jeon, Mi-Hyang;Han, Man Seok
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.9
    • /
    • pp.317-322
    • /
    • 2022
  • The rapid development of information technology is also bringing about many changes in the medical environment. In particular, it is leading the rapid change of medical image information systems using big data and artificial intelligence (AI). The prescription delivery system (OCS), which consists of an electronic medical record (EMR) and a medical image storage and transmission system (PACS), has rapidly changed the medical environment from analog to digital. When combined with multiple solutions, PACS represents a new direction for advancement in security, interoperability, efficiency and automation. Among them, the combination with artificial intelligence (AI) using big data that can improve the quality of images is actively progressing. In particular, AI PACS, a system that can assist in reading medical images using deep learning technology, was developed in cooperation with universities and industries and is being used in hospitals. As such, in line with the rapid changes in the medical image information system in the medical environment, structural changes in the medical market and changes in medical policies to cope with them are also necessary. On the other hand, medical image information is based on a digital medical image transmission device (DICOM) format method, and is divided into a tomographic volume image, a volume image, and a cross-sectional image, a two-dimensional image, according to a generation method. In addition, recently, many medical institutions are rushing to introduce the next-generation integrated medical information system by promoting smart hospital services. The next-generation integrated medical information system is built as a solution that integrates EMR, electronic consent, big data, AI, precision medicine, and interworking with external institutions. It aims to realize research. Korea's medical image information system is at a world-class level thanks to advanced IT technology and government policies. In particular, the PACS solution is the only field exporting medical information technology to the world. In this study, along with the analysis of the medical image information system using big data, the current trend was grasped based on the historical background of the introduction of the medical image information system in Korea, and the future development direction was predicted. In the future, based on DICOM big data accumulated over 20 years, we plan to conduct research that can increase the image read rate by using AI and deep learning algorithms.

Construction of Artificial Intelligence Training Platform for Multi-Center Clinical Research (다기관 임상연구를 위한 인공지능 학습 플랫폼 구축)

  • Lee, Chung-Sub;Kim, Ji-Eon;No, Si-Hyeong;Kim, Tae-Hoon;Yoon, Kwon-Ha;Jeong, Chang-Won
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.10
    • /
    • pp.239-246
    • /
    • 2020
  • In the medical field where artificial intelligence technology is introduced, research related to clinical decision support system(CDSS) in relation to diagnosis and prediction is actively being conducted. In particular, medical imaging-based disease diagnosis area applied AI technologies at various products. However, medical imaging data consists of inconsistent data, and it is a reality that it takes considerable time to prepare and use it for research. This paper describes a one-stop AI learning platform for converting to medical image standard R_CDM(Radiology Common Data Model) and supporting AI algorithm development research based on the dataset. To this, the focus is on linking with the existing CDM(common data model) and model the system, including the schema of the medical imaging standard model and report information for multi-center research based on DICOM(Digital Imaging and Communications in Medicine) tag information. And also, we show the execution results based on generated datasets through the AI learning platform. As a proposed platform, it is expected to be used for various image-based artificial intelligence researches.

The Trends and Prospects of Health Information Standards : Standardization Analysis and Suggestions (의료정보 표준에 관한 연구 : 표준화 분석 및 전망)

  • Kim, Chang-Soo
    • Journal of radiological science and technology
    • /
    • v.31 no.1
    • /
    • pp.1-10
    • /
    • 2008
  • Ubiquitous health care system, which is one of the developing solution technologies of IT, BT and NT, could give us new medical environments in future. Implementing health information systems can be complex, expensive and frustrating. Healthcare professionals seeking to acquire or upgrade systems do not have a convenient, reliable way of specifying a level of adherence to communication standards sufficient to achieve truly efficient interoperability. Great progress has been made in establishing such standards-DICOM, IHE and HL7, notably, are now highly advanced. IHE has defined a common framework to deliver the basic interoperability needed for local and regional health information networks. It has developed a foundational set of standards-based integration profiles for information exchange with three interrelated efforts. HL7 is one of several ANSI-accredited Standards Developing Organizations operating in the healthcare arena. Most SDOs produce standards (protocols) for a particular healthcare domain such as pharmacy, medical devices, imaging or insurance transactions. HL7's domain is clinical and administrative data. HL7 is an international community of healthcare subject matter experts and information scientists collaborating to create standards for the exchange, management and integration of electronic healthcare information. The ASTM specification for Continuity of Care Record was developed by subcommittee E31.28 on electronic health records, which includes clinicians, provider institutions, administrators, patient advocates, vendors, and health industry. In this paper, there are suggestions that provide a test bed, demonstration and specification of how standards such a IHE, HL7, ASTM can be used to provide an integrated environment.

  • PDF