• 제목/요약/키워드: diamond

검색결과 2,365건 처리시간 0.026초

다이아몬드 공구의 회전원판내 응력 분산을 위한 슬롯 위치의 최적화 (Optimization of Slot Location for Stress Distribution in Rotating Disc of Diamond Tools)

  • 박성일;이상진;변서봉;황성택
    • 한국재료학회지
    • /
    • 제15권9호
    • /
    • pp.560-565
    • /
    • 2005
  • The objective of this paper is to decide optimal of the slot angle to minimize stress concentration in rotating disc of diamond saw. The fracture phenomena of the slot are discussed by the theoretical and experimental approaches and then some recommendation are presented to prevent the fracture. The focus of this investigation is to evaluation the effect of the slot on stress distribution using optimum design technique and finite element method(FEM) analysis. Stress concentration of the slot with respect to the various parameter of the slot such position, size, number, rotation speed. From the experimental results, when the slot angle of diamond saw is located $8^{\circ}\~12^{\circ}$ from rotating direction, the maximum equivalent stress reduces.

EFFECT OF SUBSTRATE BIAS ON THE DIAMOND GROWTH USING MICROWAVE PLASMA CVD

  • Sakamoto, Yukihiro;Takaya, Matsufumi
    • 한국표면공학회지
    • /
    • 제32권3호
    • /
    • pp.303-306
    • /
    • 1999
  • On the effect of substrate bias at first stage of diamond synthesis at lower substrate temperature(approximately 673K) using microwave plasma CVD and effect of reaction gas system for the bias enhanced nucleation were studied. The reaction gas was mixture of methane and hydrogen or carbon monoxide and hydrogen. The nucleation density of applied bias -150V using $CH_4-H_2$ reaction gas system, significantly higher than that of $C-H_2$ reaction gas system. When the $CH_4-H_2$ reaction was used, nucleation density was increased because of existence of SiC as a interface for diamond nucleation. By use of this negative bias effect for fabrication of CVD diamond film using two-step diamond growth without pre-treatment, fabrication of the diamond film consist of diamond grains $0.2\mu\textrm{m}$ in diameter was demonstrated

  • PDF

초 고온·고압 소결 공정으로 제조된 다결정 다이아몬드 컴팩트의 열충격 특성에 미치는 다이아몬드 입자 크기의 영향 (Effect of Diamond Particle Size on the Thermal Shock Property of High Pressure High Temperature Sintered Polycrystalline Diamond Compact)

  • 김지원;백민석;박희섭;조진현;이기안
    • 한국분말재료학회지
    • /
    • 제23권5호
    • /
    • pp.364-371
    • /
    • 2016
  • This study investigates the thermal shock property of a polycrystalline diamond compact (PDC) produced by a high-pressure, high-temperature (HPHT) sintering process. Three kinds of PDCs are manufactured by the HPHT sintering process using different particle sizes of the initial diamond powders: $8-16{\mu}m$ ($D50=4.3{\mu}m$), $10-20{\mu}m$ ($D50=6.92{\mu}m$), and $12-22{\mu}m$ ($D50=8.94{\mu}m$). The microstructure observation results for the manufactured PDCs reveal that elemental Co and W are present along the interface of the diamond particles. The fractions of Co and WC in the PDC increase as the initial particle size decreases. The manufactured PDCs are subjected to thermal shock tests at two temperatures of $780^{\circ}C$ and $830^{\circ}C$. The results reveal that the PDC with a smaller particle size of diamond easily produces microscale thermal cracks. This is mainly because of the abundant presence of Co and WC phases along the diamond interface and the easy formation of Co-based (CoO, $Co_3O_4$) and W-based ($WO_2$) oxides in the PDC using smaller diamond particles. The microstructural factors for controlling the thermal shock property of PDC material are also discussed.

SOD 구조 형성에 따른 다이아몬드 박막 형성 (Formation of the Diamond Thin Film as the SOD Sturcture)

  • 고정대;이유성;강민성;이광만;이개명;김덕수;최치규
    • 한국재료학회지
    • /
    • 제8권11호
    • /
    • pp.1067-1073
    • /
    • 1998
  • CO와 $H_2$의 탄소원을 사용한 마이크로파 플라즈마 화학기상증착 방법으로 SOD 구조에 적용될 양질의 다이아몬드 박막을 형성하였고, SOD 구조를 형성하기 위해 diamond/Si(100) 구조 위에 poly-Si 박막을 저압화학기상 증착법으로 제작하였다. CO/$H_2$탄소원의 유량비 증가에 따라 다이아몬드의 결정은 octahedron 구조에서 cubo-octahedron 구조로 바뀌었으며, 결정면은 {111}과 {100}으로 혼합되어 형성되었다. 비정질 carbon과 non-diamond성분이 없는 양질의 다이아몬드 박막은 CO/$H_2$의 유량비가 0.18일 때 형성되었으며, 주 결정상은 (111) 면이었다. diamond/Si(100) 계면은 void가 없는 평활한 계면을 이루었으며, 다이아몬드 박막의 유전상수, 누설전류와 비저항은 각각 $5.31\times10^{-9}A/cm^2$ 그리고 $9\times{10^7}{\Omega}cm$이었다.

  • PDF

용융염을 이용한 다이아몬드 표면의 크롬카바이드 코팅 (Chromium Carbide Coating on Diamond Particle Using Molten Salts)

  • 정영우;김화정;안용식;최희락
    • 한국재료학회지
    • /
    • 제28권7호
    • /
    • pp.423-427
    • /
    • 2018
  • For diamond/metal composites it is better to use diamond particles coated with metal carbide because of improved wettability between the diamond particles and the matrix. In this study, the coating of diamond particles with a chromium carbide layer is investigated. On heating diamond and chromium powders at $800{\sim}900^{\circ}C$ in molten salts of LiCl, KCl, $CaCl_2$, the diamond particles are coated with $Cr_7C_3$. The surfaces of the diamond powders are analyzed using X-ray diffraction and scanning electron microscopy. The average thickness of the $Cr_7C_3$ coating layers is calculated from the result of the particle size analysis. By using the molten salt method, the $Cr_7C_3$ coating layer is uniformly formed on the diamond particles at a relatively low temperature at which the graphitization of the diamond particles is avoided. Treatment temperatures are lower than those in the previously proposed methods. The coated layer is thickened with an increase in heating temperature up to $900^{\circ}C$. The coating reaction of the diamond particles with chromium carbide is much more rapid in $LiCl-KCl-CaCl_2$ molten salts than with the molten salts of $KCl-CaCl_2$.

Effects of Plasma Surface Treatments Using Dielectric Barrier Discharge to Improve Diamond Films

  • Kang, In-Je;Ko, Min-Guk;Rai, Suresh;Yang, Jong-Keun;Lee, Heon-Ju
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.552-552
    • /
    • 2013
  • In our study we consider Al2O3 ceramic substrates for Plasma Surface Treatments in order to improve deposited diamond surface and increase diamond deposition rate by applying DBD (Dielectric Barrier Dischrge) system. Because Plasma Surface Treatments was used as a modification method of material surface properties like surface free energy, wettability, and adhesion. By applying Plasma Surface Treatments diamond films are deposited on the Al2O3 ceramic substrates. DC Arc Plasmatron with mathane and hydrogen gases is used. Deposited diamond films are investigated by SEM (Scanning Electron Microscopy), AFM (Atomic Force Microscopy) and XRD (X-ray Diffractometer). Then the C-H stretching of synthetic diamond films by FTIR (Fourier Transform Infrared Spectroscopy) is studied. As a result, nanocrystalline diamond films were identified by using SEM and diamond properties in XRD peaks at (111, $43.8{\Box}$, (220, $75.3{\Box}$ and (311, $90.4{\Box}$ were shown. Absorption peaks in FTIR spectrum, caused by CHx sp3 bond stretching of CVD diamond films, were identified as well. Finally, we improved such parameters as depostion rate ($2.3{\mu}m$/h), diamond surface uniformity, and impurities level by applying Plasma Surface Treatments. These experimental results show the importance of Plasma Surface Treatments for diamond deposition by a plasma source.

  • PDF

폴리 실리콘 위에서 나노결정질 다이아몬드 박막 성장 (Growth of Nanocrystalline Diamond Films on Poly Silicon)

  • 김선태;강찬형
    • 한국표면공학회지
    • /
    • 제50권5호
    • /
    • pp.352-359
    • /
    • 2017
  • The growth of nanocrystalline diamond films on a p-type poly silicon substrate was studied using microwave plasma chemical vapor deposition method. A 6 mm thick poly silicon plate was mirror polished and scratched in an ultrasonic bath containing slurries made of 30 cc ethanol and 1 gram of diamond powders having different sizes between 5 and 200 nm. Upon diamond deposition, the specimen scratched in a slurry with the smallest size of diamond powder exhibited the highest diamond particle density and, in turn, fastest diamond film growth rate. Diamond deposition was carried out applying different DC bias voltages (0, -50, -100, -150, -200 V) to the substrate. In the early stage of diamond deposition up to 2 h, the effect of voltage bias was not prominent probably because the diamond nucleation was retarded by ion bombardment onto the substrate. After 4 h of deposition, the film growth rate increased with the modest bias of -100 V and -150 V. With a bigger bias condition(-200 V), the growth rate decreased possibly due to the excessive ion bombardment on the substrate. The film grown under -150V bias exhibited the lowest contact angle and the highest surface roughness, which implied the most hydrophilic surface among the prepared samples. The film growth rate increased with the apparent activation energy of 21.04 kJ/mol as the deposition temperature increased in the range of $300{\sim}600^{\circ}C$.

Investigation of field emission mechanism of undoped polyucrystalline diamond films

  • Shim, Jae-Yeob;Chi, Eung-Joon;Song, Kie-Moon;Baik, Hong-Koo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1999년도 제17회 학술발표회 논문개요집
    • /
    • pp.62-62
    • /
    • 1999
  • Carbon based materials have many attractive properties such as a wide band gap, a low electron affinity, and a high chemical and mechanical stability. Therefore, researches on the carbon-based materials as field emitters have been drawn extensively to enhance the field emission properties. Especially, diamond gives high current density, high current stability high thermal conductivity durable for high temperature operation, and low field emission behaviors, Among these properties understanding the origin of low field emission is a key factor for the application of diamond to a filed emitter and the verification of the emission site and its distribution of diamond is helpful to clarify the origin of low field emission from diamond There have been many investigations on the origin of low field emission behavior of diamond crystal or chemical vapor deposition (CVD) diamond films that is intentionally doped or not. However, the origin of the low field emission behavior and the consequent field emission mechanism is still not converged and those may be different between diamond crystal and CVD diamond films as well as the diamond that is doped or not. In addition, there have been no systematic studies on the dependence of nondiamond carbon on the spatial distribution of emission sites and its uniformity. Thus, clarifying a possible mechanism for the low field emission covering the diamond with various properties might be indeed a difficult work. On the other hand, it is believed that electron emission mechanisms of diamond are closely related to the emission sites and its distributions. In this context, it will be helpful to compare the spatial distribution of emission sites and field emission properties of the diamond films prepared by systematic variations of structural property. In this study, we have focused on an understanding of the field emission variations of structural property. In this study, we have focused on an understanding of the field emission mechanism for the CVD grown undoped polycrystalline diamond films with significantly different structural properties. The structural properties of the films were systematically modified by varying the CH4/H2 ratio and/or applying positive substrate bias examined. It was confirmed from the present study that the field emission characteristics are strongly dependent on the nondiamond carbon contents of the undoped polycrystalline diamond films, and a possible field emission mechanism for the undoped polycrystalline diamond films is suggested.

  • PDF

마이크로파 플라즈마 CVD 방법으로 Si, Inconel 600 및 Steel 모재위에 증착된 다이아몬드 박막의 증착특성 (The deposition characteristics of the diamond films deposited on Si, Inconel 600 and steel by microwave plasma CVD method)

  • 김현호;김흥회;이원종
    • 한국표면공학회지
    • /
    • 제28권3호
    • /
    • pp.133-141
    • /
    • 1995
  • The deposition characteristics of diamond films were investigated for three different substrates : Si, Inconel 600 and steel. Diamond films were prepared by microwave plasma CVD method using $CH_4$, $H_2$ and $O_2$ as reaction gases. The deposited films were analyzed with SEM, Raman spectroscopy and ellipsometer. For Si substrate, diamond films were successfully obtained for most of the deposition conditions used in this study. As the $CH_4$ flow rate decreased and the $O_2$ flow rate increased, the quality of the film was improved due to the reduced non-diamond phase in the film. For Inconel 600 substrate, the surface pretreatment with diamond powders was required to deposit a continuous diamond film. The films deposited at temperatures of $600^{\circ}C$ and $700^{\circ}C$ had mainly diamond phase, but they were peeled off locally due to the difference in the thermal expansion coefficient between the substrate and the deposited films. The films deposited at $500^{\circ}C$ and $850^{\circ}C$ had only the graphitic carbon phase. For steel substrate, all of the films deposited had only the graphitie carbon phase. We speculated that the formation of diamond nuclei on the steel substrate was inhibited due to the diffusion of carbon atoms into the steel substrate which has a large amount of carbon solubility.

  • PDF

MPCVD법으로 증착된 다이아몬드 박막 특성에 미치는 메탄가스의 영향 (Effect of Methane Gases on the Properties of Diamond Thin Films Synthesized by MPCVD)

  • 송진수;남태운
    • 한국전기전자재료학회논문지
    • /
    • 제24권3호
    • /
    • pp.229-233
    • /
    • 2011
  • Diamond thin films were deposited on pretreated Co cemented tungsten carbide (WC-6%Co) inserts as substrate by microwave plasma chemical vapor deposition (MPCVD) system, equipped with a 915MHz, 30kW generator for generating a large-size plasma. The substrates were pretreated with two solutions Murakami solution $[KOH:K_3Fe(CN)_6:H_2O]$ and nitric solution $[HNO_3:H_2O]$ to etch, WC and Co at cemented carbide substrates, respectively. The deposition experiments were performed at an input power of 10 kW and in a total pressure of 100 torr. The influence of various $CH_4$ contents on the crystallinity and morphology of the diamond films deposited in MPCVD was investigated using scanning electron microscopy (SEM) and Raman spectroscopy. The diamond film synthesized by the $CH_4$ plasma shows a triangle-faceted (111) diamond. As $CH_4$ contents was increased, the thickness of diamond films increased and the faceted planes disappeared. Finally, Faceted diamond changed into nano-crystalline diamond with random crystallinity.