• Title/Summary/Keyword: diamine

Search Result 510, Processing Time 0.025 seconds

Comparison of cellulose DP measurements using the CED (Cupriethylene diamine) and NMMO(N-methylmorpholine-N-oxide) (CED(Cupriethylene diamine)과 NMMO (N-methylmorpholine-N-oxide)를 이용한 셀룰로오스의 중합도 측정법의 비교)

  • Lee, Min-Woo;Park, Ji-Soon;Park, Dong-Hui;Seo, Yung-Bum
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.5
    • /
    • pp.62-66
    • /
    • 2010
  • Cellulosic materials were dissolved by NMMO(N-methylmorpholine-N-oxide) and CED (Cupriethylene diamine), respectively, to measure their DPs (degrees of polymerization) by using viscometer. We changed cellulose DPs by applying various amounts of low intensity electron-beam radiation to the cellulosic materials. NMMO is environmental-friendly, non-toxic, and biodegradable organic cellulose solvent and used industrially because of its high cellulose dissolving power and high solvent recovery ratio. The cellulose DP measurement results using these two different chemicals were correlated highly ($R^2$ >0.95). It was also found that cellulose with high DP was dissolved more easily in NMMO than CED. In addition, NMMO method gave more higher resolution in the measurement.

Examining the performance of PAI/ZnO synthesized with diamine and nano particles

  • Jianwei Shi;Xiaoxu Teng
    • Advances in nano research
    • /
    • v.14 no.2
    • /
    • pp.201-210
    • /
    • 2023
  • A ZnO/poly (amide-imide) hybrid nanocomposite film with different weight percentages of Zinc oxide (ZnO) nanoparticles is synthesized and characterized in this paper. A two-step reaction successfully synthesized a new kind of heteroaromatic diamine with bulky pendant groups. In order to produce 3, 5-dinitro-3, 3-bis (4-(4-Nitrophenoxy) phenyl) -2- benzofuran-1-one, 3, 3'-bis (4-hydroxyphenyl) benzofuran-1-one and 3'-bis (4-hydroxyphenyl) benzofuran-1-one were combined with 3'-bis (3-hydroxyphenyl) benzofuran-1-one. The obtained dinitro was then reduced by zinc dust and hydrochloric acid. The reaction of 4, 4* carbonyl diphthalic anhydride with amino acid L-alanine in acetic acid leads to the production of very high yields of chiral diacid monomer. As a result of the direct polymerization of these monomers, new optically active polymers were formed (amide-imide). In order to synthesize poly (amide-imide)/ZnO nanocomposites with different weight percentages (2, 4, 6, 8, and 10%), PAI and ZnO nanoparticles were combined using ultrasonication SEM, Fourier transform infrared spectroscopy, X-ray diffraction and thermal gravimetry were used to characterize the PAI films.

Silver Diamine Fluoride Compound for Dental Caries and Its Characterisation Using Microscopic Computed Tomography and Nanoindentation

  • So-Youn An;Myung-Jin Lee;Min-Kyung Kang;Youn-Soo Shim
    • Journal of dental hygiene science
    • /
    • v.23 no.1
    • /
    • pp.60-67
    • /
    • 2023
  • Background: In our study, a silver diamine fluoride (SDF) compound for the treatment of dental caries was synthesized to characterize its remineralization activity upon direct application to deciduous teeth. This study aimed to use microscopic computed tomography (microCT) and nanoindentation to evaluate whether SDF composite application could effectively arrest dental caries in five exfoliated primary molars. Methods: Carious teeth were extracted and visually examined using quantitative photofluorescence devices (Qraycam and QraypenTM). After performing microCT, the SDF composite was applied to the teeth according to the manufacturer's instructions. The researchers exchanged and precipitated the irritant saliva once daily for 1 week. The teeth were sectioned longitudinally through the centers of the mesial and distal surfaces, embedded, polished, and measured using nanoindentation. Thereafter, microCT was repeated. Statistical analyses were performed using GraphPad Prism software. Results: Following SDF composite application, a remineralized layer was observed on microCT images, and the hardness increased when measured using nanoindentation. We found that demineralized enamel presented with an increased number of irregular crystals in the deep carious lesion group compared with those in the shallow carious lesion group, resulting in a rougher surface. Conclusion: The SDF composite may be used for remineralization of early caries and cessation of advanced caries in primary molars.

Effect of Silver Diamine Fluoride and Sodium Fluoride Varnish on Remineralization in Artificially Induced Enamel Caries: An in vitro Study (Silver diamine fluoride와 sodium fluoride (NaF) 바니쉬의 법랑질 인공우식병소 재광화 효과)

  • Kim, Soyoung;Lee, Sangho;Lee, Nanyoung;Jih, Myeongkwan
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.47 no.3
    • /
    • pp.266-276
    • /
    • 2020
  • The purpose of this study was to compare the remineralization effect of 38% silver diamine fluoride (SDF) and 5% sodium fluoride (NaF) varnish on artificially induced enamel caries. The present study standardized the physiochemical characteristics of the tooth structure using bovine teeth, realized the wash-off action of agents using a saliva, reproduced an environment similar to mouth through pH-cycling, and comparatively assessed the remineralization effect of 38% SDF and 5% NaF varnish in a non-destructive method using micro-CT. And the remineralized enamel surface structure was analyzed by scanning electron microscopy (SEM) and energy dispersive X-Ray spectroscopy (EDS). In both SDF and NaF varnish, mineral density (△Hounsfield unit value) and the volume of enamel restored to normal mineral density through remineralization gradually increased with time. And the SDF showed a much higher level of increase in mineral density at all depths and remineralized volume than NaF varnish. According to SEM analysis, the surface roughness decreased in the order of artificial saliva, NaF varnish and SDF. In addition, EDS analysis showed that silver ion was precipitated on the enamel surface in SDF group. In conclusion, SDF had a greater remineralization effect than NaF varnish on demineralized enamel.

The Effect of Silver Diamine Fluoride on Salivary Biofilm (Silver diamine fluoride가 타액 생물막에 미치는 영향)

  • Seo, Meekyung;Song, Ji-Soo;Shin, Teo Jeon;Hyun, Hong-Keun;Kim, Jung-Wook;Jang, Ki-Taeg;Lee, Sang-Hoon;Kim, Young-Jae
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.47 no.4
    • /
    • pp.406-415
    • /
    • 2020
  • Silver diamine fluoride (SDF) is an effective and efficient agent for arresting dental caries. It can be useful in treating children with behavioral or medical limitations. The purpose of this study was to evaluate the antimicrobial effect of SDF by using salivary biofilm. Pellicle-like saliva coated structure was prepared by using unstimulated saliva. For developing cariogenic biofilm, Streptococcus mutans was added to the mixture of pooled saliva and inoculated into a saliva coated glass or chamber. SDF was applied to cariogenic biofilm to evaluate the antimicrobial effect of SDF. As time passed, total bacteria and S. mutans were reduced after application of SDF (p < 0.000). Confocal laser scanning microscope also showed the increment of the ratio of dead cell. As a result of experiment using enamel and dentin of primary teeth, it was confirmed that the growth of cariogenic biofilm was inhibited when the SDF was treated (p = 0.029 each). This study showed excellent anti-microbial effect of SDF. And anti-caries effect in clinical practice can be expected.

Evaluation of Acid Resistance of Demineralized Dentin after Silver Diamine Fluoride and Potassium Iodide Treatment (Silver Diamine Fluoride와 요오드화 칼륨 도포 후 변화하는 탈회 상아질의 내산성 평가)

  • Haesong, Kim;Juhyun, Lee;Siyoung, Lee;Haeni, Kim;Howon, Park
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.49 no.4
    • /
    • pp.392-401
    • /
    • 2022
  • This study investigated the effects of silver diamine fluoride (SDF) and potassium iodide (KI) treatments on the acid resistance of dentin exposed to secondary caries. Sixteen bovine dentin specimens with artificially induced caries were assigned to the following four groups: untreated negative control, untreated positive control, SDF-treated (SDF), and SDF and KI-treated (SDFKI). Multispecies cariogenic biofilms containing Streptococcus mutans, Lactobacillus casei, and Candida albicans were cultured on the specimens for 28 days, except for the negative control group. Specimens from the negative control group were stored in phosphate-buffered saline for that period. After a cariogenic biofilm challenge, the degree of demineralization was evaluated using micro-computed tomography (micro-CT). As a result of data analysis using micro-CT, the demineralization depths of the negative control, positive control, SDF, and SDFKI groups were 149.0 ± 7 ㎛, 392.0 ± 11 ㎛, 206.0 ± 20 ㎛, and 230.0 ± 31 ㎛, respectively. The degree of demineralization was significantly reduced in the SDF and SDFKI groups compared with that in the untreated positive control group. There were no significant differences between the SDF and SDFKI groups. This study confirmed that SDF and SDFKI treatments increase the acid resistance of dentin to secondary caries. KI did not significantly affect the caries-arresting effect of the SDF.

Surface Roughness of Dentin and Formation of Early Cariogenic Biofilm after Silver Diamine Fluoride and Potassium Iodide Application (Silver Diamine Fluoride와 요오드화 칼륨 도포 후 상아질 표면 거칠기와 초기 우식원성 세균막 형성)

  • Haeni, Kim;Howon, Park;Juhyun, Lee;Siyoung, Lee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.49 no.2
    • /
    • pp.140-148
    • /
    • 2022
  • This study aimed to evaluate the effect of silver diamine fluoride (SDF) and potassium iodide (KI) on the formation of cariogenic biofilm and surface roughness in vitro. A total of 48 bovine dentin specimens with artificially induced caries were prepared and divided into 3 groups of 16: untreated control, SDF-treated, and SDF-treated followed by KI (SDFKI). Ten specimens from each group were used to observe microbial adhesion. Multispecies cariogenic biofilms including Streptococcus mutans, Lactobacillus casei, and Candida albicans were cultured on the specimens. Microbes were cultured for 24 hours, and the colony-forming unit was calculated. The remaining specimens were observed by atomic force microscope and scanning electron microscope (SEM). The number of bacteria was significantly lower in the SDF and SDFKI groups. KI did not inhibit the antibacterial activity of SDF significantly. SEM images showed particles generated after SDF and SDFKI application were deposited on the dentin, but there was no significant difference in surface roughness between the 3 groups. This study confirmed that SDF and SDFKI application did not have a significant effect on the surface roughness of dentin, but effectively inhibited the formation of the early cariogenic bacterial film after 24 hours compared to the control.