DOI QR코드

DOI QR Code

Examining the performance of PAI/ZnO synthesized with diamine and nano particles

  • Jianwei Shi (School of Chemistry and Chemical Engineering, Yangtze Normal University) ;
  • Xiaoxu Teng (School of Chemistry and Chemical Engineering, Yangtze Normal University)
  • Received : 2022.03.25
  • Accepted : 2022.08.18
  • Published : 2023.02.25

Abstract

A ZnO/poly (amide-imide) hybrid nanocomposite film with different weight percentages of Zinc oxide (ZnO) nanoparticles is synthesized and characterized in this paper. A two-step reaction successfully synthesized a new kind of heteroaromatic diamine with bulky pendant groups. In order to produce 3, 5-dinitro-3, 3-bis (4-(4-Nitrophenoxy) phenyl) -2- benzofuran-1-one, 3, 3'-bis (4-hydroxyphenyl) benzofuran-1-one and 3'-bis (4-hydroxyphenyl) benzofuran-1-one were combined with 3'-bis (3-hydroxyphenyl) benzofuran-1-one. The obtained dinitro was then reduced by zinc dust and hydrochloric acid. The reaction of 4, 4* carbonyl diphthalic anhydride with amino acid L-alanine in acetic acid leads to the production of very high yields of chiral diacid monomer. As a result of the direct polymerization of these monomers, new optically active polymers were formed (amide-imide). In order to synthesize poly (amide-imide)/ZnO nanocomposites with different weight percentages (2, 4, 6, 8, and 10%), PAI and ZnO nanoparticles were combined using ultrasonication SEM, Fourier transform infrared spectroscopy, X-ray diffraction and thermal gravimetry were used to characterize the PAI films.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (21808017), the Science and Technology Research Project of Chongqing Education Board (CXQT21037 and KJQN201901428) and Fuling Science and Technology Commission Project (FLKJ, 2021ABB1041). The Natural Science Foundation Project of Chongqing CSTC (2022NSCQ-MSX0304).

References

  1. Djahnit, L., Sened, N., El-Miloudi, K., Lopez-Manchado, M.A. and Haddaoui, N. (2019), "Structural characterization and thermal degradation of poly (methylmethacrylate)/zinc oxide nanocomposites", J. Macromol. Sci. A, 56(3), 189-196. https://doi.org/10.1080/10601325.2018.1563494.
  2. Elamin, N. and Elsanousi, A. (2013), "Synthesis of ZnO nanostructures and their photocatalytic activity", J. Appl. Ind. Sci., 1(1), 32-35.
  3. Fateh, R., Dillert, R. and Bahnemann, D. (2014), "Self-cleaning properties, mechanical stability, and adhesion strength of transparent photocatalytic TiO2-ZnO coatings on polycarbonate", ACS Appl. Mater. Interf., 6(4), 2270-2278. https://doi.org/10.1021/am4051876.
  4. Fawaz, J. and Mittal, V. (2015), "Synthesis of polymer nanocomposites: review of various techniques", Synth. Tech. Polym. Nanocompos., 1-30. https://doi.org/10.1002/9783527670307.ch1.
  5. Gornicka, B. and Gorecki, L. (2010), "TGA/DTG/DSC investigation of thermal ageing effects on polyamide-imide enamel", J. Therm. Anal. Calorim., 101(2), 647-650. https://doi.org/10.1007/s10973-010-0883-9.
  6. Granqvist, C.G. (1993), "Transparent conductive electrodes for electrochromic devices: A review", Appl. Phys. A, 57(1), 19-24. https://doi.org/10.1007/BF00331211
  7. Han, M.C., He, H.W., Kong, W.K., Dong, K., Wang, B.Y., Yan, X., Wang, L.M. and Ning, X. (2022), "High-performance electret and antibacterial polypropylene meltblown nonwoven materials doped with boehmite and ZnO nanoparticles for air filtration", Fiber Polym., 23(7), 1947-1955. https://doi.org/10.1007/s12221-022-4786-8.
  8. Hsiao, S.H., Guo, W., Kung, Y.C. and Lee, Y.J. (2011), "Redox-active and electrochromic aromatic poly (amide-imide) s with 2, 4-dimethoxytriphenylamine chromophores", J. Polym. Res., 18(6), 1353-1364. https://doi.org/10.1007/s10965-010-9538-6.
  9. Hu, L.B., Huang, X.Y., Zhang, S., Chen, X., Dong, X.H., Jin, H., Jiang, Z.Y., Gong, X.R., Xie, Y.X., Li, C., Chi, Z.T. and Xie, W.F. (2021), "MoO3 structures transition from nanoflowers to nanorods and their sensing performances", J. Mater. Sci. Mater. Electron., 32(19), 23728-23736. https://doi.org/10.1007/s10854-021-06464-7.
  10. Knauth, P. and Schoonman, J. (2007), Nanocomposites: Ionic Conducting Materials and Structural Spectroscopies, Springer Science & Business Media.
  11. Lee, K.S. and Kobayashi, S. (2010), Polymer Materials: BlockCopolymers, Nanocomposites, Organic/Inorganic Hybrids, Polymethylenes, Springer.
  12. Li, T., Yin, W., Gao, S., Sun, Y., Xu, P., Wu, S., Kong, H., Yang, G. and Wei, G. (2022), "The combination of two-dimensional nanomaterials with metal oxide nanoparticles for gas sensors: A review", Nanomaterials, 12(6). https://doi.org/10.3390/nano12060982.
  13. Lu, T., Yan, W., Feng, G., Luo, X., Hu, Y., Guo, J., Yu, Z., Zhao, Z. and Ding, S. (2022), "Singlet oxygen-promoted one-pot synthesis of highly ordered mesoporous silica materials via the radical route", Green Chem., 24(12), 4778-4782. https://doi.org/10.1039/D2GC00869F.
  14. Luo, Y., Xie, Y., Geng, W., Chu, J., Wu, H., Xie, D., Sheng, X. and Mei, Y. (2022), "Boosting fire safety and mechanical performance of thermoplastic polyurethane by the face-to-face two-dimensional phosphorene/MXene architecture", J. Mater. Sci. Technol., 129, 27-39. https://doi.org/10.1016/j.jmst.2022.05.003.
  15. Mallakpour, S. and Madani, M. (2012), "Use of silane coupling agent for surface modification of zinc oxide as inorganic filler and preparation of poly (amide-imide)/zinc oxide nano-composite containing phenylalanine moieties", Bull. Mater. Sci., 35(3), 333-339. https://doi.org/10.1007/s12034-012-0304-8.
  16. Meilert, K.T., Laub, D. and Kiwi, J. (2005), "Photocatalytic self-cleaning of modified cotton textiles by TiO2 clusters attached by chemical spacers", J. Mol. Catal. A Chem., 237(1-2), 101-108. https://doi.org/10.1016/j.molcata.2005.03.040.
  17. Mohan, D.J. and Reddy, A.V.R. (2007), "Synthesis, characterization, and investigation of structure-thermal cycloimidization relationship of novel poly (amide amic acid) s to poly (amide imide) s by thermogravimetric analysis", J. Polym. Sci. Part B, 45(21), 2937-2947. https://doi.org/10.1002/polb.21205.
  18. Ning, F., He, G., Sheng, C., He, H., Wang, J., Zhou, R. and Ning, X. (2021), "Yarn on yarn abrasion performance of high modulus polyethylene fiber improved by graphene/polyurethane composites coating", J. Eng. Fiber Fabr., 16, 1558925020983563. https://doi.org/10.1177/1558925020983563.
  19. O'Donnell, H.J. and Baird, D.G. (1995), "In situ reinforcement of polypropylene with liquid-crystalline polymers: effect of maleic anhydride-grafted polypropylene", Polymer, 36(16), 3113-3126. https://doi.org/10.1016/0032-3861(95)97874-F.
  20. Omanovic-Miklicanin, E., Badnjevic, A., Kazlagic, A. and Hajlovac, M. (2020), "Nanocomposites: A brief review", Health Technol., 10(1), 51-59. https://doi.org/10.1007/s12553-019-00380-x
  21. Panutumrong, P., Metanawin, T. and Metanawin, S. (2015), "The effect of nano-Zinc oxide on the self-cleaning properties of cotton fabrics for textile application", Int. J. Adv. Culture Technol., 3(1), 13-20. https://doi.org/10.17703/IJACT.2015.3.1.13.
  22. Paul, D.R. and Robeson, L.M. (2008), "Polymer nanotechnology: Nanocomposites", Polymer, 49(15), 3187-3204. https://doi.org/10.1016/j.polymer.2008.04.017.
  23. Sato, M., Kawata, A., Morito, S., Sato, Y. and Yamaguchi, I. (2008), "Preparation and properties of polymer/zinc oxide nanocomposites using functionalized zinc oxide quantum dots", Eur. Polym. J., 44(11), 3430-3438. https://doi.org/10.1016/j.eurpolymj.2008.08.014.
  24. Sheng, C., He, G., Hu, Z., Chou, C., Shi, J., Li, J., Meng, Q., Ning, X., Wang, L. and Ning, F. (2021), "Yarn on yarn abrasion failure mechanism of ultrahigh molecular weight polyethylene fiber", J. Eng. Fiber Fabr., 16, 15589250211052766. https://doi.org/10.1177/15589250211052766.
  25. Sun, D., Huo, J., Chen, H., Dong, Z. and Ren, R. (2022), "Experimental study of fretting fatigue in dovetail assembly considering temperature effect based on damage mechanics method", Eng. Fail. Anal., 131, 105812. https://doi.org/10.1016/j.engfailanal.2021.105812.
  26. Yang, Y., Wang, Y., Zheng, C., Lin, H., Xu, R., Zhu, H., Bao, L. and Xu, X. (2022), "Lanthanum carbonate grafted ZSM-5 for superior phosphate uptake: Investigation of the growth and adsorption mechanism", Chem. Eng. J., 430, 133166. https://doi.org/10.1016/j.cej.2021.133166.
  27. Yu, Q., Lin, R., Jiang, L., Wan, J. and Chen, C. (2018), "Fabrication and photocatalysis of ZnO nanotubes on transparent conductive graphene-based flexible substrates", Sci. China Mater., 61(7), 1007-1011. https://doi.org/10.1007/s40843-017-9211-9.
  28. Zhou, J., Bai, J. and Liu, Y. (2022), "Fabrication and modeling of matching system for air-coupled transducer", Micromachines, 13(5). https://doi.org/10.3390/mi13050781.