• Title/Summary/Keyword: diameter of hole

Search Result 759, Processing Time 0.022 seconds

Effect of Nozzle Hole Number on Atomization Characteristics of DME Fuel Spray using High Pressure Injector (고압 인젝터의 노즐 홀 수가 DME 연료분무의 미립화 특성에 미치는 영향)

  • Lee, Jongtae;Lee, Sanghoon;Chon, Mun Soo
    • Journal of ILASS-Korea
    • /
    • v.19 no.4
    • /
    • pp.216-220
    • /
    • 2014
  • This paper presents effect of nozzle hole number on atomization characteristic of DME fuel spray using three different type of injector having the hole number of 6, 7 and 8. For this study, PDPA(phase Doppler particle analyzer) experiment was performed in terms of $T_{ASOE}$ under various injection pressure. To compare general trend of atomization characteristic, the law data were ensemble averaged based on $T_{eng}$ of 0.2 ms. Results showed that the droplet diameter in terms of SMD(Sauter Mean Diameter) was reduced as increase in injection pressure. Increasing the number of hole lead to reduce in droplet diameter, but no significant reduction in diameter was observed between hole number of 7 and that of 8. In addition, increasing the number of hole resulted in decrease in droplet velocity which is considered as the effect of reduction in spray momentum due to decreasing of fuel quantity per each hole.

Measurement of the Shape in the Radioactive Area by Ultrasonic Wave Sensor

  • Park, Koon-Nam;Sim, Chuel-Muu;Park, Chang-Oong;Lee, Chang-Hee;Park, Jong-Hark
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.927-934
    • /
    • 2002
  • The HANARO ( High-flux Advanced Neutron Application Reactor) has been operated since 1995. The Cold Neutron (CN) hole was implanted in the reflector tank from the design stage. Before a vacuum chamber and a moderator cell for the cold neutron source are installed into the CN hole, it is necessary to measure exactly the size of the inside diameter and thickness of the CN hole to prevent the interference problem. Due to inaccessibility and high radiation field in the CN hole, a mechanical measurement method is not permitted. The immersed ultrasonic technique is considered as the best way to measure the thickness and the diameter of the CN hole. The 4-Axis manipulator was designed and fabricated for locating the ultrasonic sensors. The transducer of an ultrasonic sensor having 10 MHz frequency leads to high resolution as much as 0.03mm. The inside diameter and thickness of 550 points of the CN hole were measured using 2 channel ultrasonic sensors. The results show that the thickness and inside diameter of the CN hole is in the range of 3.3∼6.7mm and 156∼ 165mm, respectively. This data will be a good reference for the design of the cold neutron source facility.

Simulation of fracture mechanism of pre-holed concrete model under Brazilian test using PFC3D

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher
    • Smart Structures and Systems
    • /
    • v.22 no.6
    • /
    • pp.675-687
    • /
    • 2018
  • In the previous studies on the porous rock strength the effect of pore number and its diameter is not explicitly defined. In this paper crack initiation, propagation and coalescence in Brazilian model disc containing a single cylindrical hole and or multiple holes have been studied numerically using PFC3D. In model with internal hole, the ratio of hole diameter to model diameter was varied between 0.03, 0.17, 0.25, 0.33, and 0.42. In model with multiple hole number of holes was different in various model, i.e., one hole, two holes, three holes, four holes, five holes, six holes, seven holes, eight holes and nine holes. Diameter of these holes was 5 mm, 10 mm and 12 mm. The pre-holed Brazilian discs are numerically tested under Brazilian test. The breakage load in the ring type disc specimens containing an internal hole with varying diameters is measured. The mechanism of cracks propagation in the wall of the ring type specimens is also studied. In the case of multi-hole Brazilian disc, the cracks propagation and b cracks coalescence are also investigated. The results shows that breaking of the pre-holed disc specimens is due to the propagation of radially induced tensile cracks initiated from the surface of the central hole and propagating toward the direction of diametrical loading. In the case of disc specimens with multiple holes, the cracks propagation and cracks coalescence may occur simultaneously in the breaking process of model under diametrical compressive loading. Finally the results shows that the failure stress and crack initiation stress decreases by increasing the hole diameter. Also, the failure stress decreases by increasing the number of hole which mobilized in failure. The results of these simulations were comprised with other experimental and numerical test results. It has been shown that the numerical and experimental results are in good agreement with each other.

A Study on the Wide Reach Nozzle of Sprayer (ll) (휴반용 분무기의 Nozzle에 관한 연구(II))

  • 원장우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.15 no.3
    • /
    • pp.3053-3058
    • /
    • 1973
  • 1. This study was conducted to examine the effects of change of the short range nozzle hole on the travelling distance. The results of this study are summarized as follows; a) Effect of change of the cap hole diameter on the travelling distance of sprayed particles was generally a linear, the increasing rate was about 0.27. b) When the difference between the sectional area of cap hole and that of grooves of swirl plate, was small the travelling distance was decreased by the decreasing of spraying speed at cap hole. 2. This study was conducted to examine the effects of change of the short range nozzle hole on the size of spraying particles. The results of this study are summarized as follows; a) The diameter of sprayed particles on travelling distances in the short range nozzle did not coincide with the kinetic energy principle derived from the momentum and the resistance. b) The average diameter of sprayed particle between 1m and 3m in which amount of sprayed particle was particularly a great deal, was big, because that some of sprayed particles were absorbed each other on the way to fall c) Effect of increase of cap hole diameter was generally enlarged the average diameter of sprayed particle with small rate.

  • PDF

A study on natural frequencies and damping ratios of composite beams with holes

  • Demir, Ersin
    • Steel and Composite Structures
    • /
    • v.21 no.6
    • /
    • pp.1211-1226
    • /
    • 2016
  • In this study, free vibration and damping characteristics of composite beams with holes are investigated, experimentally and numerically. Two types of samples with different fabrics are used: unidirectional and woven. The effects of diameter, number and location of circular holes on the vibration characteristics of composite beams are examined. The effects of rotation angle and minor to major diameter ratio of the elliptical hole are also investigated numerically. Moreover, the mode shapes of all types of beams are obtained numerically. According to the results, the natural frequency decreases with increasing hole diameter but increases very little with increasing the distance between the hole center and the clamped end. Damping ratio decreases by increasing the diameter of hole. But it fluctuates by increasing the diameters of holes of beam having three holes. Furthermore it decreases by increasing the distance between hole center and clamped end except for the range 50 mm to 100 mm.

Effects of Length-to-Diameter Ratio on the Three-Dimensional Flow Within an Injection Hole Normally Oriented to the Mainflow (분사구멍의 길이가 수직 분사구멍 내부에서의 3차원 유동에 미치는 영향)

  • Lee, Sang Woo;Joo, Seong Kuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.9
    • /
    • pp.1255-1266
    • /
    • 1998
  • Effects of a length-to-diameter ratio, L/D, on the three-dimensional flow and aerodynamic loss within an injection hole, which is normally oriented to the mainflow, have been investigated by using a straight five-hole probe. The length-to-diameter ratio of the injection hole is varied to be 0.5 and 2.0 for blowing ratios of 0.5, 1.0 and 2.0. Regardless of the blowing ratio, flows within the hole and at the jet exit are strongly affected by the length-to-diameter ratio. In the case of L/D=0.5, the inside flow is considerably influenced by the mainflow, and the exit flow variation is found to be the greatest. The aerodynamic loss in this case is usually attributed to jet -mainflow interactions. In the case of L/D=2.0, the flow separation and reattachment in the inlet region are completely separated from the complicated exit flow, and the aerodynamic-loss production is mainly due to the inlet flow separation.

Investigation of the tensile behavior of joint filling under experimental test and numerical simulation

  • Fu, Jinwei;Haeri, Hadi;Sarfarazi, Vahab;Marji, Mohammad Fatehi;Guo, Mengdi
    • Structural Engineering and Mechanics
    • /
    • v.81 no.2
    • /
    • pp.243-258
    • /
    • 2022
  • In this paper, tensile behavior of joint filling has been investigated under experimental test and numerical simulation (particle flow code). Two concrete slabs containing semi cylinder hole were prepared. These slabs were attached to each other by glue and one cubic specimen with dimension of 19 cm×15 cm×6 cm was prepared. This sample placed in the universal testing machine where the direct tensile stress can be applied to this specimen by implementing a special type of load transferring device which converts the applied compressive load to that of the tensile during the test. In the present work, two different joint filling thickness i.e., 3 mm and 6 mm were prepared and tested in the laboratory to measure their direct tensile strengths. Concurrent with experimental test, numerical simulation was performed to investigate the effect of hole diameter, length of edge notch, filling thickness and filling length on the tensile behavior of joint filling. Model dimension was 19 cm×15 cm. hole diameter was change in four different values of 2.5 cm, 5 cm, 7.5 cm and 10 cm. glue lengths were different based on the hole diameter, i.e., 12.5 cm for hole diameter of 2.5 cm, 10 cm for hole diameter of 5 cm, 7.5 cm for hole diameter of 7.5 cm and 5 cm for hole diameter of 10 cm. length of edge notch were changed in three different value i.e., 10%, 30% and 50% of glue length. Filling thickness were changed in three different value of 3 mm, 6 mm and 9 mm. Tensile strengths of glue and concrete were 2.37 MPa and 6.4 MPa, respectively. The load was applied at a constant rate of 1 kg/s. Results shows that hole diameter, length of edge notch, filling thickness and filling length have important effect on the tensile behavior of joint filling. In fixed glue thinks and fixed joint length, the tensile strength was decreased by increasing the hole diameter. Comparing the results showed that the strength, failure mechanism and fracture patterns obtained numerically and experimentally were similar for both cases.

Buckling Behavior of Sandwich Composite Columns by Varying Hole Size and Hole Position (원공 크기 및 원공 위치에 따른 샌드위치 복합재 기둥의 좌굴 거동)

  • Lee, Sang-Jin;Yoon, Sung-Ho
    • Composites Research
    • /
    • v.25 no.1
    • /
    • pp.19-25
    • /
    • 2012
  • The study investigated the buckling behavior of sandwich composite columns with different hole sizes and hole positions when they were applied to a compressive load. The columns consisted of 1.7mm thick faces of glass fabric/epoxy and 23mm, 37mm, 48mm, and 61mm thick cores of urethane-foam. Different hole sizes with the diameter of 25mm and 38mm were considered in this experiment. To evaluate the effect of hole position on the buckling behavior, we considered three types of hole position: 25mm diameter hole located at the center, 25mm diameter hole at 1/4 position from the center to the end of the column, and 25mm diameter hole at 1/2 position from the center to the end of the column. According to the results, buckling and maximum loads of the column having 25mm diameter hole were lower by 10% compared to those of the column without hole, whereas the loads for the column having 38mm diameter hole were 30% less than those of the column without hole. Hole position appeared to have no effect on buckling and maximum loads. Major failure modes were observed as follows: the core shear failure for the thin columns having 23mm and 37mm thick cores, and the face-core debonding for the thick columns having 48mm and 61mm thick cores.

Measurement of the Shape of the Cold Neutron Source Vertical Hole by Ultrasonic Wave Sensor (초음파센서를 이용한 냉중성자원 수직공 형상측정)

  • Park, Guk-Nam;Choe, Chang-Ung;Sim, Cheol-Mu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2167-2173
    • /
    • 2000
  • The HANARO (High-flux Advanced Neutron Application Reactor) has operated since 1995. The Cold Neutron(CN) hole was implanted in the reflector tank from the design stage. Before a vacuum chamber and a moderator cell for the cold neutron source are installed into the CN hole, it is necessary to measure the exact size of the inside diameter and thickness of the CN hole to prevent the interference problem. Due to inaccessibility and high radiation field in the CN hole, a mechanical measurement method is not permitted. The immersion ultrasonic technique is considered as the best method to measure the thickness and the diameter. The 4 axis manipulator of the 2 channel of a sensor module was fabricated. The transducer of 10 MHz results in 0.03 nun of resolution. The inside diameter and thickness for 550 points of the CN hole were measured using 2 channel ultrasonic sensors. The results showed that the thickness is in the range of 13-6.7 mm and inside diameter is in the range of o 156-165. These data will be a good reference in the design of a cold neutron source facility.

Multiple-Hole Effect on the Performance of a Sparger During Direct Contact Condensation of Steam

  • Seok Cho;Song, Chul-Hwa;Chung, Heung-June;Chun, Se-Young;Chung, Moon-Ki
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.482-491
    • /
    • 2001
  • An experimental study has been carried out to investigate an I-type sparger-performance in view of pressure oscillation and thermal mixing in a pool. Its pitch-to-hole diameter, P/D, varies from 2 to 5. The test conditions are restricted to the condensation oscillation regime. In the present study, two different hole patterns, staggered and parallel types, are employed under various test conditions. The amplitude of the pressure pulse shows a peak for pool temperatures of 45∼85$\^{C}$, which depends on P/D and the steam mass flux. The effect of hole pattern on the pressure load is smaller than that of P/D. The dominant frequency increases with the subcooling temperature of pool water and P/D. A correlation for the dominant frequency is proposed in terms of the pitch-to-hole diameter ratio and other dimensionless thermal hydraulic parameters.

  • PDF