• 제목/요약/키워드: diagnostic image

검색결과 967건 처리시간 0.027초

Image enhancement of digital periapical radiographs according to diagnostic tasks

  • Choi, Jin-Woo;Han, Won-Jeong;Kim, Eun-Kyung
    • Imaging Science in Dentistry
    • /
    • 제44권1호
    • /
    • pp.31-35
    • /
    • 2014
  • Purpose: This study was performed to investigate the effect of image enhancement of periapical radiographs according to the diagnostic task. Materials and Methods: Eighty digital intraoral radiographs were obtained from patients and classified into four groups according to the diagnostic tasks of dental caries, periodontal diseases, periapical lesions, and endodontic files. All images were enhanced differently by using five processing techniques. Three radiologists blindly compared the subjective image quality of the original images and the processed images using a 5-point scale. Results: There were significant differences between the image quality of the processed images and that of the original images (P< 0.01) in all the diagnostic task groups. Processing techniques showed significantly different efficacy according to the diagnostic task (P< 0.01). Conclusion: Image enhancement affects the image quality differently depending on the diagnostic task. And the use of optimal parameters is important for each diagnostic task.

Patent Ductus Arteriosus in 4 Senile Dogs

  • Kim, Ho-Ki;Kim, Young-Hwan;Won, Sung-Jun;Han, Man-Gil;Jeong, In-Seong
    • 한국임상수의학회:학술대회논문집
    • /
    • 한국임상수의학회 2009년도 추계학술대회
    • /
    • pp.233-233
    • /
    • 2009
  • PDF

모바일 진단의료영상 서비스를 위한 시스템 구현 (System Implementation for Mobile-Based Diagnostic Medical Image Service)

  • 김용수;전준현
    • 한국통신학회논문지
    • /
    • 제38B권11호
    • /
    • pp.870-878
    • /
    • 2013
  • 본 논문의 목적은 진단의료영상 서비스를 위한 안드로이드 기반의 mPACS (mobile-based Picture Archiving Communication System)을 구현하는 데 있다. 제안된 mPACS는 병원 PACS에 저장된 진단의료영상을 모바일 기반에 적용할 수 있도록 통합플랫폼을 제공하며, 사용자가 원하는 진단의료영상을 통합플랫폼에서 저장/검색/조작/전송하는 것을 허용한다. 여기서, mPACS 플랫폼은 안드로이드 기반의 체계(즉, 진단의료영상처리)를 위하여 PACS ${\leftrightarrow}$ mPACS ${\leftrightarrow}$ smartphone 간의 전송프로토콜, 영상포맷변환기, JPEG/JPEG2000 부호화기, 텍스트와 아바타 검색등을 포함한다. 이 mPACS는 모바일기반의 기기가 PACS시스템의 진단의료영상 서비스가 가능 한 솔루션을 제공함에 있어서 매우 유용하고 효과적인 것으로 나타났다.

Analysis of the priority of anatomic structures according to the diagnostic task in cone-beam computed tomographic images

  • Choi, Jin-Woo
    • Imaging Science in Dentistry
    • /
    • 제46권4호
    • /
    • pp.245-249
    • /
    • 2016
  • Purpose: This study was designed to evaluate differences in the required visibility of anatomic structures according to the diagnostic tasks of implant planning and periapical diagnosis. Materials and Methods: Images of a real skull phantom were acquired under 24 combinations of different exposure conditions in a cone-beam computed tomography scanner (60, 70, 80, 90, 100, and 110 kV and 4, 6, 8, and 10 mA). Five radiologists evaluated the visibility of anatomic structures and the image quality for diagnostic tasks using a 6-point scale. results: The visibility of the periodontal ligament space showed the closest association with the ability to use an image for periapical diagnosis in both jaws. The visibility of the sinus floor and canal wall showed the closest association with the ability to use an image for implant planning. Variations in tube voltage were associated with significant differences in image quality for all diagnostic tasks. However, tube current did not show significant associations with the ability to use an image for implant planning. conclusion: The required visibility of anatomic structures varied depending on the diagnostic task. Tube voltage was a more important exposure parameter for image quality than tube current. Different settings should be used for optimization and image quality evaluation depending on the diagnostic task.

인공적 인접면 치아우식증의 구내방사선사진과 디지털 영상의 진단능 평가 (DIAGNOSTIC ABILITY OF THE PERIAPICAL RADIOGRAPHS AND DIGITAL IMAGE IN THE DETECTION OF THE ARTIFICIAL PROXIMAL CARIES)

  • 허민석;유동수
    • 치과방사선
    • /
    • 제24권2호
    • /
    • pp.439-450
    • /
    • 1994
  • Recently, the digital image was introduced into radiological image. The digital image has the power of contrast enhancement, histogram control, and other digitally enhancement. At the point of the resolution, periapical radiograph is superior to the digital image, but enhanced digital procedure improves the diagnostic ability of the digital image. The purpose of this study was to evaluate the diagnostic ability of artificial proximal caries in conventional radiographs, digital radiographs and enhanced digital radiographs (histogram specification). ROC (Receiver Operating Characteristic) analysis and paired t-test were used for the evaluation of detectability, and following results were acquired: 1. The mean ROC area of conventional radiographs was 0.9274. 2. The mean ROC area of unenhanced digital image was 0.9168. 3. The mean ROC area of enhanced digital image was 0.9339. 4. The diagnostic ability of three imaging methods was not significant difference(p>0.05). So, the digital images had similar diagnostic ability of artificial proximal caries to conventional radiographs. If properly enhanced digital image, it may be superior to conventional radiographs.

  • PDF

Impact of Photon-Counting Detector Computed Tomography on Image Quality and Radiation Dose in Patients With Multiple Myeloma

  • Alexander Rau;Jakob Neubauer;Laetitia Taleb;Thomas Stein;Till Schuermann;Stephan Rau;Sebastian Faby;Sina Wenger;Monika Engelhardt;Fabian Bamberg;Jakob Weiss
    • Korean Journal of Radiology
    • /
    • 제24권10호
    • /
    • pp.1006-1016
    • /
    • 2023
  • Objective: Computed tomography (CT) is an established method for the diagnosis, staging, and treatment of multiple myeloma. Here, we investigated the potential of photon-counting detector computed tomography (PCD-CT) in terms of image quality, diagnostic confidence, and radiation dose compared with energy-integrating detector CT (EID-CT). Materials and Methods: In this prospective study, patients with known multiple myeloma underwent clinically indicated whole-body PCD-CT. The image quality of PCD-CT was assessed qualitatively by three independent radiologists for overall image quality, edge sharpness, image noise, lesion conspicuity, and diagnostic confidence using a 5-point Likert scale (5 = excellent), and quantitatively for signal homogeneity using the coefficient of variation (CV) of Hounsfield Units (HU) values and modulation transfer function (MTF) via the full width at half maximum (FWHM) in the frequency space. The results were compared with those of the current clinical standard EID-CT protocols as controls. Additionally, the radiation dose (CTDIvol) was determined. Results: We enrolled 35 patients with multiple myeloma (mean age 69.8 ± 9.1 years; 18 [51%] males). Qualitative image analysis revealed superior scores (median [interquartile range]) for PCD-CT regarding overall image quality (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]), edge sharpness (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]), image noise (4.0 [4.0-4.0] vs. 3.0 [3.0-4.0]), lesion conspicuity (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]), and diagnostic confidence (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]) compared with EID-CT (P ≤ 0.004). In quantitative image analyses, PCD-CT compared with EID-CT revealed a substantially lower FWHM (2.89 vs. 25.68 cy/pixel) and a significantly more homogeneous signal (mean CV ± standard deviation [SD], 0.99 ± 0.65 vs. 1.66 ± 0.5; P < 0.001) at a significantly lower radiation dose (mean CTDIvol ± SD, 3.33 ± 0.82 vs. 7.19 ± 3.57 mGy; P < 0.001). Conclusion: Whole-body PCD-CT provides significantly higher subjective and objective image quality at significantly reduced radiation doses than the current clinical standard EID-CT protocols, along with readily available multi-spectral data, facilitating the potential for further advanced post-processing.

X선관의 실효초점 측정에 관한 고찰 (Measurement of Focal Spot Size of Heavy Loaded X-ray Tubes)

  • 장광현;임오수;김형기;송창욱;정경모;정환
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제16권1호
    • /
    • pp.101-106
    • /
    • 1993
  • In order to assure safety of both patient and operator, and to provide uniform quality radiographs, it is necessary to perform periodic calibration of diagnostic X-ray equipment. A basic parameter of diagnostic equipment's and its image sharpness is the size(and shape the energy distribution) of the focal spot as viewed along the central X-ray beam. This size determines the resolution possible with the equipment and also determines the heat characteristics of an anode. A fine focus tube gives high resolution but causes high local heating of target. In past, the pin-hole and star pattern image measurement for evaluation of resolution have been widely used, but it produced blurring and inaccuracy of image. So newly inverted Ug-meter has advantage in more convenient measurement method and less out-put bias than other image measurement. The authors intended to compare measured focal size between Ug-meter and focal spot test tool, changed state from setting to now of units.

  • PDF

Medical Image Compression using Adaptive Subband Threshold

  • Vidhya, K
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권2호
    • /
    • pp.499-507
    • /
    • 2016
  • Medical imaging techniques such as Magnetic Resonance Imaging (MRI), Computed Tomography (CT) and Ultrasound (US) produce a large amount of digital medical images. Hence, compression of digital images becomes essential and is very much desired in medical applications to solve both storage and transmission problems. But at the same time, an efficient image compression scheme that reduces the size of medical images without sacrificing diagnostic information is required. This paper proposes a novel threshold-based medical image compression algorithm to reduce the size of the medical image without degradation in the diagnostic information. This algorithm discusses a novel type of thresholding to maximize Compression Ratio (CR) without sacrificing diagnostic information. The compression algorithm is designed to get image with high optimum compression efficiency and also with high fidelity, especially for Peak Signal to Noise Ratio (PSNR) greater than or equal to 36 dB. This value of PSNR is chosen because it has been suggested by previous researchers that medical images, if have PSNR from 30 dB to 50 dB, will retain diagnostic information. The compression algorithm utilizes one-level wavelet decomposition with threshold-based coefficient selection.

영상 인식 기반 신속 인플루엔자 자동 판독 기법 개발 (Development of Automated Rapid Influenza Diagnostic Test Method Based on Image Recognition)

  • 이지은;주윤하;이정찬
    • 대한의용생체공학회:의공학회지
    • /
    • 제40권3호
    • /
    • pp.97-104
    • /
    • 2019
  • To examine different types of influenza diagnostic test kits automatically, automated rapid influenza diagnostic test method based on image recognition is proposed in this paper. First, the proposed methods classify a variety of the rapid influenza diagnostic test kit based on support vector machine that analyzes the kits' feature point. Then, to improve the accuracy of test, the proposed methods match the histogram of both the target image of influenza kit and the input image of influenza kit for minimizing the effect of environment factors, such as lighting and exposure variations. And, to minimize the effect from composition of the hand-helds devices, the proposed methods extract the feature point and match point-by-point between target image of influenza kit and input image of influenza kit. Experimental results of 124 experimental group show that the proposed methods significantly have effectiveness, which shows 90% accuracy in moderate antigen, for the preliminary examination of influenza, and provides the opportunity for taking action against influenza.

초음파 영상에서 LoG 연산자를 이용한 진단 객체의 3차원 분할 (3D Segmentation of a Diagnostic Object in Ultrasound Images Using LoG Operator)

  • 정말남;곽종인;김상현;김남철
    • 대한의용생체공학회:의공학회지
    • /
    • 제24권4호
    • /
    • pp.247-257
    • /
    • 2003
  • This paper proposes a three-dimensional (3D) segmentation algorithm for extracting a diagnostic object from ultrasound images by using a LoG operator In the proposed algorithm, 2D cutting planes are first obtained by the equiangular revolution of a cross sectional Plane on a reference axis for a 3D volume data. In each 2D ultrasound image. a region of interest (ROI) box that is included tightly in a diagnostic object of interest is set. Inside the ROI box, a LoG operator, where the value of $\sigma$ is adaptively selected by the distance between reference points and the variance of the 2D image, extracts edges in the 2D image. In Post processing. regions of the edge image are found out by region filling, small regions in the region filled image are removed. and the contour image of the object is obtained by morphological opening finally. a 3D volume of the diagnostic object is rendered from the set of contour images obtained by post-processing. Experimental results for a tumor and gall bladder volume data show that the proposed method yields on average two times reduction in error rate over Krivanek's method when the results obtained manually are used as a reference data.