• Title/Summary/Keyword: dewatering efficiency

Search Result 53, Processing Time 0.021 seconds

Variation of Sedimentation & Dewaterability Characteristics of Sewage Sludge under Various Coagulants (응집제 종류에 따른 하수 슬러지의 침강 및 탈수 특성 변화)

  • Baik, Seon Jai;Jo, Jung Min;Song, Hyun Woo;Han, Ihn Sup
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.3
    • /
    • pp.311-318
    • /
    • 2014
  • The purpose of this study is to investigate the effect of various types of coagulant on dewaterability and settleability of sewage sludge for the application of dewatering process. Cationic organic coagulants and inorganic coagulants of the aluminium base were used; PAC (Poly Aluminium chloride, $Al_2O_3$ 17%) and C-210P (0.2%). After Jar test, PAC 26 mg/L and 0.2% C-210P 55 mg/L was decided as the optimum concentration of the coagulant according to zeta potential measurement. pH, alkalinity and viscosity were measured in all experiments and the data on sedimentation characteristics is analyzed by SDI, SVI sedimentation rate and solid flux. The SRF(Specific Resistance of Filtration) experiment was conducted with the result of single and dual injection system as the dewaterability experiment. As a result, the organic coagulant making large floc has good characteristics of sedimentation and agglutination. Also, it is observed that the organic coagulants injection has a better dewaterability efficiency of coagulants under the condition of the lowest SRF value, followed by dual and inorganic coagulants injection.

Piggery Waste Treatment using Improved MLE Process in Full-Scale (수정된 MLE 공정을 이용한 Full-Scale에서의 돈사분뇨처리)

  • Hwang, In-Su;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.895-904
    • /
    • 2006
  • The improved MLE (modified Ludzack-Ettinger) process was operated for piggery waste treatment in full-scale public livestock waste treatment plant. The treated waste from bioreactor was suitable for the strict effluent standard of 200 mgCOD/L and 60 mgTN/L as it was dewatered chemically without settling tank and passed through filtration process. Though this treatment method produced a great deal of sludge ($6.4m^3\;per\;m^3$ dewatered piggery waste) it was able to accomplish predominant effluent quality by removing non-biodegradable COD and color without advanced oxidation process as ozone, fenton and etc.. The nitrogen removal efficiency of bioreactor was rapidly declined from March to May (from 0.016 to 0.005 kgN/kgVSS-day) when disinfection is in earnest as well as from warm season when reactor temperature rises higher than $35^{\circ}C$(from 0.016 to 0.008 kgN/kgVSS-day). This study proves that counterplanes for infection residuals, bioreactor temperature and dewatering sludge reduction are necessary for piggery waste treatment.

Evaluation of Changes in Particle Size and Production of Sand and Cake Produced in Wet Aggregate Production Process (습식 골재 생산 공정에서 모래 및 케이크 발생량 평가)

  • Young-Wook Cheong;Jin-Young Lee;Sei-Sun Hong
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.177-184
    • /
    • 2024
  • This study was conducted to find a way to reduce the production of cakes generated in the domestic aggregate production process. Cakes from 8 wet aggregate producers were collected and particle size was analyzed. Samples were collected step by step from an aggregate producer A, particle size analysis was performed, and the material balance was calculated before and after an sand recovery unit by modeling the production process. As a result of the particle size analysis of eight cakes, one sample contained 50% sand, and the rest contained about 5% to 25% sand. The results showing that the cake contained a variety of sand in cakes may indicate that the recovery efficiency of the sand recovery units in the field varied. Sieve analysis of the samples showed that the generation of sand particles increased 2.8 times during the third crushing compared to the second crushing, and more cake particles were generated. As a result of simulating the sand recovery unit model, the lower the cut point of the cyclone and dewatering screen, the higher the sand production and the less cake production appeared. In order to reduce the production of cake in the field, it was determined that an optimal operation of the sand recovery unit was necessary in the aggregate production process.

A Study on the Accumulation Phenomena of Oxidized Starch in White Water in Closed Fine Papermaking Process (Part 1) -Effect of Papermaking system closure- (백상지 공정 폐쇄화에 따른 백수 내 산화전분의 축적 현상에 관한 연구 (제1보) -공정 폐쇄화의 영향-)

  • Ahn, Hyun-Kyun;Lee, Hak-Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.3
    • /
    • pp.15-34
    • /
    • 2004
  • Diverse benefits such as reduction of fresh water consumption and effluent discharge, efficient use of raw materials and energy savings can be obtained by papermaking system closure. Closure of papermaking processes, however, causes many problems including reduction of the efficiency of additives, decrease of retention and dewatering, felt plugging, poor Paper quality, generation of slime and odor, poor vacuum efficiency, etc, and it has been recognized that accumulation of Inorganic and organic substances in the process white water is the prime cause of these problems. Therefore, technological developments for preventing accumulation of these detrimental substances are urgently required for Implementing papermaking system closure. Understanding of the accumulation phenomena of the inorganic and organic substances in the papermaking process white water is prerequisite for papermaking system closure. In this study a process simulation method was used to analyze the accumulation phenomena of anionic starch In the process white water as the closure level of a fine paper making process is increased. A pilot paper machine was used as a model process. Starch adsorption and desorption models were developed based on the concept of starch adsorption ratio, which was not considered in previous studies. Steady state simulation studies were carried out based on this model using a commercial simulator. In steady state simulation, the variation of dissolved starch concentration in each process unit was monitored as a function of white water usage for wire shower. The result of the steady state simulation showed that dissolved starch concentration and its increase ratio in Process units increased as white water usage ratio for wire shower increased.

Reduction of Salt Concentration in Food Waste by Salt Reduction Process with a Rotary Reactor (로터리식 저염화 공정설비에 의한 음식물 쓰레기의 염분농도 저감)

  • Kim, Wi-sung;Seo, Young-Hwa
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.1
    • /
    • pp.61-70
    • /
    • 2005
  • In order to reduce salt(as NaCl) contents in food waste and to improve the quality of discharged wastewater produced during the recycling process of food waste for the purpose of compost and feed stuff, a salt reduction process by added water into food waste was developed. The pilot plant with a rotary type salt reduction equipment to manage continuously 0.5 ton food waste per hour was constructed and the efficiency was tested. The amount of added water was calculated by the water content and the efficiency of dewatering process of food waste. Approximately 0.8 liter water per a kilogram of food waste was injected into the reactor in which food waste was pouring simultaneously, then diluted/mixed in a rotary reactor. About 1.1 liter of leachate including added water was generated, but the leachate contained a very high content of organic particles, so most particles were recovered by two step solid-liquid separation process. The first step was a gravitational filtering process using screens with a pore diameter of 1mm, and the second separation process was centrifugal process. Organic quality of food waste which had been desalted was maintained by inputting the entirely recovered organic particles. The efficiency of salt reduction of food waste was estimated by measuring a chloride anion by titration and salinity by a probe. The results by the two different measuring methods were always over 50%, and the quality of final wastewater was improved up to $200mg/{\ell}$ as TS(total solid) by an additional settling process after the two step solid-liquid separation process.

  • PDF

Effect of Chemical Conditioning on Flotation and Thickening Efficiencies of Sewage Sludge (화학적인 개량이 하수슬러지의 부상농축효율에 미치는 영향)

  • Lee, Chang-Han;Ahn, Kab-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.9
    • /
    • pp.743-748
    • /
    • 2009
  • Chemical sludge conditioning is widely used to improve the dewatering efficiency. It is treated with commonly used conditioners, and then thickened and dewatered with a mechanical device. This paper aims to examine the flotation and thickening efficiencies of sewage sludge for conditioning conditions, such as unaerobic storage time, kinds of coagulant and dosages, and flotation conditions, such as sludge concentration and A/S ratio, using an dissolved air flotation apparatus. Experimental results showed that the specific surface area and specific resistance to filtration (SRF) were significantly increased and the flotation and thickening efficiencies were decreased with anaerobic storage time. However, the flotation and thickening efficiencies faintly decreased in sewage sludges conditioned as $Al_2(SO_4)_3$, $Fe_2(SO_4)_3$, and PSO-M. Flotation and thickening efficiencies in conditioned sewage sludge could be sustained up to 96% at A/S ratio of 0.01 mL/mg or over.

Removal of PVC from Mixed Plastic Waste by Combination of Air Classification and Centrifugal Process (풍력(風力) 및 습식비중(濕式比重) 선별(選別)에 의한 혼합(混合)폐플라스틱 종말품(終末品)으로부터 PVC 제거(除去)에 관한 연구(硏究))

  • Choi, Woo-Zin;Yoo, Jae-Myung
    • Resources Recycling
    • /
    • v.16 no.5
    • /
    • pp.71-76
    • /
    • 2007
  • The mixed plastic waste generated from households after hand-picking and/or mechanical sorting processes amounts to 1,750,000 ton in 2006, and most of these waste are finally end up with landfill and/or incineration due to the lacks of separation technologies and economical reasons. The mixed plastic wastes can not be used as raw materials for chemical and/or thermal recycling processes because of their high content of PVC(upto 4.0 wt.%). In the present research, gravity separation system has been developed to remove PVC from the mixed plastic waste and to recover the PO-type plastics. This system mainly consists of air classification, magnetic separation, one-step crushing, feeding system at fixed rate and wet-type gravity separation system. The gravity system based on centrifugal separation has been developed at capacity of 0.5 ton/h and it consists of mixing, precleaning, separation, dewatering, recovery system and wastewater treatment system, etc. The main objective of this process is to achieve high separation efficiency of polyolefins with less than 0.3 wt.% PVC content and less than 10% moisture content in the final products. In addition, a crushing unit of with 8 rotor system is also developed to improve the crushing efficiency of soft-type plastics. The system with a capacity of 1.0 ton/h is developed and operational results are presented.

Pilot-scale Study for Pulse Power Pretreatment of Waste Activated Sludge (Pulse Power를 이용한 폐활성슬러지 전처리의 파이럿 규모 연구)

  • Yoo, Hee Chan;Hong, Seung Mo;Choi, Han Na
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.3
    • /
    • pp.71-81
    • /
    • 2005
  • Anaerobic digestion is employed worldwide as the oldest and most important process for sludge stabilization. An additional advantage is the production of methane during anaerobic digestion. However, the waste activated sludge(WAS) has poor anaerobic degradability and less gas production due to the cell wall of bio-solid. In order to improve and enhance stabilization and dewatering of the WAS, a number of pretreatment processes have been developed and investigated. In this research, a pilot-scale study of pulse power pretreatment was performed to improve anaerobic degradability and dewaterability of the WAS. A pilot plant was designed and operated based on a previous laboratory study. Change of the sludge characteristics by pulse power pretreatment was estimated to assess the increasing soluble organics. The increased soluble organics could be used as a good substrate in the anaerobic digesion process. Gas production and methane potential of the anaerobic digestion were estimated as the parameters of anaerobic degradability. For evaluation of the dewaterability of pretreated WAS, capillary suction time(CST) and specific resistance were measured. The efficiency of energy recovery was also estimated by calculating energy balance.

  • PDF

Effects of Sewage Treatment on Characteristics of Sludge as a Composting Material (하수처리가 퇴비화를 위한 하수 슬러지 특성에 미치는 영향)

  • Kim, Jae-Koo;Kim, Jong-Soo
    • Applied Biological Chemistry
    • /
    • v.41 no.2
    • /
    • pp.181-186
    • /
    • 1998
  • The effects of sewage treatment on characteristics of sludge as a composting material were investigated for a year during the initial operation at the full-scale Chunan sewage treatment plant. Due to the shortage of design capacity of belt press, a sludge dewatering unit, non-volatile solids were recirculating and concentrating in the treatment plant, resulting in an increase of MLSS and a decrease in F/M ratio at the activated sludge system. Special attention is required for long term operations since the increase of non-volatile solids in the plant would deteriorates the treatment efficiency. The sewage sludge of the Chunan sewage treatment plant showed 79.5% of water content, 11.6% of organic content, and C/N ratio of 6.1, and contained As 1.8 mg/kg, Cd 27 mg/kg, Hg <0.1 mg/kg, Pb 54 mg/kg, T-Cr 370 mg/kg, and Cu 1,100mg/kg of heavy metals. In order to be used as raw material for optimum composting, the sewage sludge requires bulking agents for moistrure/porosity control and a carbon source for adjusting C/N ratio. However, the sewage sludge is not adequate as a soil conditioner after composing due to a high content of heavy metals. If the sewage sludge has to he used as a soil conditioner after composting, it as required to identify and remove tire industrial wastewater portions in tire influent of the plant since heavy metals in the influent were mostly concentrated in dewatered sludge.

  • PDF

Analysis of Influence Factors for Remediation of Contaminated Soils Using Prefabricated Vertical Drains (연직배수재를 이용한 오염지반 복원의 영향인자 분석)

  • Park, Jeongjun;Shin, Eunchul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.2
    • /
    • pp.39-46
    • /
    • 2008
  • Due to the growth in industrialization, potential hazards in subsurface environments are becoming increasingly significant. The extraction of the contaminant from the soil and movement of the water are restricted due to the low permeability and adsorption characteristics of the reclaimed soils. There are a number of approaches to in-situ remediation that are used in contaminated sites for removing contaminants. These include soil flushing, dual phase extraction, and soil vapor extraction. Among these techniques, soil flushing was the focus of the investigation in this paper. Incorporated technique with PVDs has been used for dewatering from fine-grained soils for the purpose of ground improvement by means of prefabricated vertical drain systems. The laboratory model tests were performed by using the flushing tracer solutions for silty soils and recorded the tracer concentration changes with the elapsed time and flow rates. The modeling was intended to predict the effectiveness and time dependence of the remediation process. Modeling has been performed on the extraction, considering tracer concentration and laboratory model test characteristics. The computer model used herein are SEEP/W and CTRAN/W, this 2-D finite element program allows for modeling to determine hydraulic head and pore water pressure distribution, efficiency of remediation for the subsurface environment. It is concluded that the coefficient of permeability of contaminated soil is related with vertical velocity and extracted flow rate. The vertical velocity and extracted flow rate have an effect on dispersivity and finally are played an important role in-situ soil remediation.

  • PDF