• Title/Summary/Keyword: developmental morphology

Search Result 202, Processing Time 0.026 seconds

Effect of Thawing Temperature on Sperm Characteristics of Frozen Semen in Miniature Pig (미니 돼지 동결정액의 융해 온도가 정자성상에 미치는 영향)

  • Choi, Won-Cheol;Yang, Mi-Hye;Lee, Yong-Seung;Cheong, Hee-Tae;Yang, Boo-Keun;Lee, Dong-Seok;Park, Choon-Keun
    • Reproductive and Developmental Biology
    • /
    • v.31 no.3
    • /
    • pp.175-179
    • /
    • 2007
  • The objective of this study was to investigate the effect of thawing temperature on the sperm viability and acrosomal morphology for semen storage of miniature pig by the 0.5ml straw method. In this present study, sperm viability (SYBR-14/PI staining), membrane integrity (Hypoosmotic Swelling Test), acrosome intactness, intensity and capacitation status (chlorotetracycline staining) in frozen miniature pig sperm were evaluated after thawing at 37, 50 and $70^{\circ}C$ for 5, 10 and 45 sec, respectively. Interestingly, the results indicated that sperm thawed at $70^{\circ}C$ for 5 sec significantly (p<0.05) increased sperm viability, but lower the percentage of AR (acrosome reacted spermatozoa) pattern compared to sperm thawed at $37^{\circ}C$ for 45 sec and $50^{\circ}C$ for 10 sec. In terms of thawing condition, high temperature for a short time using the 0.5ml straw was improved cryosurvival of miniature pig semen. Therefore, appropriate thawing method for cryopreservation of miniature pig is required for increasing post-thawing viability.

Evidence for the Drp1-dependent Mitochondrial Fission in the Axon of the Rat Cerebral Cortex Neurons (흰쥐 대뇌 피질 신경세포의 축삭에서 Drp1 의존적 미토콘드리아의 분열)

  • Cho, Bong-Ki;Lee, Seung-Bok;Sun, Woong;Kim, Young-Hwa
    • Applied Microscopy
    • /
    • v.41 no.4
    • /
    • pp.249-255
    • /
    • 2011
  • Neurons utilize a large quantity of energy for their survival and function, and thereby require active mitochondrial function. Mitochondrial morphology shows dynamic changes, depending on the cellular condition, and mitochondrial dynamics are required for neuronal development and function. In this study, we found that the length of mitochondria in the distal axon is significantly shorter than that of mitochondria in dendrites or proximal axons of cerebral cortical neurons, and the reason for this difference is the local fission within the axon. We also found that suppression of Drp1, a key regulator of mitochondrial fission, resulted in significant elongation of mitochondria in axons. Collectively, these results suggest that local mitochondrial fission within the axon contributes to region-dependent mitochondrial length differences in the axons of cortical neurons.

Ultrastructure of the Androgenic Gland of the Freshwater Prawn, Macrobrachium nipponense (징거미새우, Macrobrachium nipponense의 Androgenic Gland 미세구조)

  • 김대현;강정하;김대중;한창희
    • Development and Reproduction
    • /
    • v.3 no.1
    • /
    • pp.53-58
    • /
    • 1999
  • The androgenic gland secretes a hormone, androgenic gland hormone, which is believed to act on the differentiation of the primary, secondary, and behavioral sex characteristics in most malacostracan crustaceans. This report presents the ultrastructural morphology of the androgenic gland in the freshwater prawn Macrobrachium nipponense. This gland, located in the coxopodite of the last pair of walking legs, was attached to the subterminal region of the sperm duct. The gland was composed of simple cellular strands, encased by a fibrous sheath. Microvilli were situated in the fibrous sheath, especially at the edge of each cellular strand. The androgenic gland cells had the large and round nucleus and rough endoplasmic reticulum arranged either in spirals or in concentric circles throughout the cytoplasm of the cell. They also had the well-developed Golgi complex and long mitochondria with flat and transverse cristae. The Golgi complex was similar to microvesicular cluster, but usually in the shape of typical dictyosomes, These features of androgenic gland cells coincides well with the protein/peptide secretion in their function. However, despite the apparent ultastructual equipment for protein/peptide secretion, no accumulation of materials secreted were noticed in the cytoplasm. Therefore it is strongly suggested that the transient transportation of the materials into the hemocoel has occurred just after synthesis.

  • PDF

Differentiation of Dopaminergic Neurons from Mesenchymal-Like Stem Cells Derived from Human Umbilical Cord Vein

  • Kim, Ju-Ran;Lee, Jin-Ha;Jalin, Anjela Melinda;Lee, Chae-Yeon;Kang, Ah-Reum;Do, Byung-Rok;Kim, Hea-Kwon;Kam, Kyung-Yoon;Kang, Sung-Goo
    • Development and Reproduction
    • /
    • v.13 no.3
    • /
    • pp.173-181
    • /
    • 2009
  • One of the most extensively studied populations of multipotent adult stem cells are mesenchymal stem cells (MSCs). MSCs derived from the human umbilical cord vein (HUC-MSCs) are morphologically and immunophenotypically similar to MSCs isolated from bone marrow. HUC-MSCs are multipotent stem cells, differ from hematopoietic stem cells and can be differentiated into neural cells. Since neural tissue has limited intrinsic capacity of repair after injury, the identification of alternate sources of neural stem cells has broad clinical potential. We isolated mesenchymal-like stem cells from the human umbilical cord vein, and studied transdifferentiation-promoting conditions in neural cells. Dopaminergic neuronal differentiation of HUC-MSCs was also studied. Neural differentiation was induced by adding bFGF, EGF, dimethyl sulfoxide (DMSO) and butylated hydroxyanisole (BHA) in N2 medium and N2 supplement. The immunoreactive cells for $\beta$-tubulin III, a neuron-specific marker, GFAP, an astrocyte marker, or Gal-C, an oligodendrocyte marker, were found. HUC-MSCs treated with bFGF, SHH and FGF8 were differentiated into dopaminergic neurons that were immunopositive for tyrosine hydroxylase (TH) antibody. HUC-MSCs treated with DMSO and BHA rapidly showed the morphology of multipolar neurons. Both immunocytochemistry and RT-PCR analysis indicated that the expression of a number of neural markers including NeuroD1, $\beta$-tubulin III, GFAP and nestin was markedly elevated during this acute differentiation. While the stem cell markers such as SCF, C-kit, and Stat-3 were not expressed after neural differentiation, we confirmed the differentiation of dopaminergic neurons by TH/$\beta$-tubulin III positive cells. In conclusion, HUC-MSCs can be differentiated into dopaminergic neurons and these findings suggest that HUC-MSCs are alternative cell source of therapeutic treatment for neurodegenerative diseases.

  • PDF

Effects of Sucrose Treatment on the Morphology and Integration of foreign DNA into Bovine Oocytes (소 난자에서 형태와 외래 DNA Integration에 관한 Sucrose 처리의 효과)

  • Kim, S. G.;Kim, K. S.;Kim, T. W.;Lee, H. T.;K. S. Chung
    • Korean Journal of Animal Reproduction
    • /
    • v.25 no.4
    • /
    • pp.399-407
    • /
    • 2001
  • The microinjection of retroviral vectors into the perivitelline spaces of MII-stage oocytes increased production of transgenic bovine embryos. However, oocytes have various sizes of perivitelline space, and there is the tendency that the oocyte membranes are damageable by micropipettes during the injection of retroviral vectors into perivitelline spaces or oocytes. Thus, it was not always possible to stably inject retroviral vector into perivitelline spaces of oocytes. Here we used sucrose to minimize the damage of the oocyte membrane. When the oocytes were suspended in 0.5% sucrose, poor quality oocytes showed rough cytoplasmic membranes, while good quality oocytes maintained smooth membranes. However, when the tatters were subjected to in vitro fertilization, no significant differences were observed in cleavage rates (82% of control Vs. 84% of sucrose treated oocytes). The Same trends were obtained from the oocytes fertilized after microinjection of LN$\beta$-EGFP and LNC-hGH genes into the perivitelline spares. The rates of cleavage and blastocyst from microinjection of LN$\beta$-EGFP genes were 81 and 25%, and from microinjection of LNC-hGM genes were 53 and 30%, respectively. The result indicated that microinjected oocytes could develop to the blastocyst stages after in vitro fertilization with no significant difference from control group. Moreover, the integration of hGH-gene (by PCR analysis) was detected in 52% of infected cleaved embryos and the expression of EGFP-gene (under a fluoresrence microscope) was also observed in 34% of infected blastocyst. These results indicated that 0.5% sucrose treatment could be an efficient method not only to select good quality embryos but also to inject retroviral vectors into perivitelline spares without any harm and hence improving developmental rates.

  • PDF

EARLY DEVELOPMENT OF THE TOOTH IN THE STAGED HUMAN EMBRYOS AND FETUSES (한국인 배자 및 태아에서 유치 발생의 조직학적 변화)

  • Lim, Hee-Sik;Park, Hyoung-Woo;Oh, Hyeon-Joo;Kim, Hee-Jin;Choi, Byung-Jai
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.25 no.2
    • /
    • pp.383-399
    • /
    • 1998
  • Tooth development is usually described in four stages such as bud stage, cap stage, bell stage and crown stage. Exact time of appearance of tooth primordia is different among reports, and up to now there is no timetable regarding initial tooth development. To understand the congenital malformations and other disorders of the orofacial region, there is a need to establish a standard timetable on early tooth development. Till now, studies on the tooth development were mainly on later fetuses, and only few reports on early stage. Also, there were no reports on the time when bud stage turns to cap stage, and cap stage to bell stage. In this study, external morphology of face and the early development of the tooth, and transition of bud stage to cap stage, cap stage to bell stage were studied using 27 staged human embryos and 9 serially sectioned human fetuses. The results are as follows: 1. Mandibular region was formed by union of both mandibular arch at stage 15, and maxillary region by union of maxillary arch, medial nasal prominence, and intermaxillary segment at stage 19. 2. Ectodermal thickening which represents the primordia of tooth appeared in mandibular region at stage 13, and maxillary region at stage 15. 3. Bud stage began from mandibular primary central incisor at stage 17, and maxillary primary central incisor at stage 18. And the sequence of appearance was in the mandibular primary lateral incisor at stage 19, maxillary primary lateral incisor at stage 20, mandibular primary canine at stage 22, maxillary primary canine and primary first molar at stage 23, madibular primary first molar and maxillary primary second molar at 9th week, and mandibular primary second molar at 10th week of development. 4. Cap stage began from the primary anterior teeth at 9th week, and primary second molar still had the characteristics of cap stage at 12th week of development. 5. Transition to bell stage started from the primary anterior teeth at 12th week, and primary second molar started at 16th week of development. 6. Trnasition to crown stage started from primary anterior teeth at 16th week, and primary second molar at 26th week of development.

  • PDF

Development Changes in the External Structure of the Head and the Histological Structure of the Eye in Artificially Reared Japanese Eel, Anguilla japonica, Leptocephalus and Glass Eel (극동산 뱀장어(Anguilla japonica) 인공 자어와 실뱀장어의 두부 변화 및 안구의 조직학적 변화)

  • Kim, Dae-Jung;Lee, Nam-Sil;Lee, Bae-Ik;Kim, Shin Kwon;Kim, Kyung-Kil
    • Journal of Life Science
    • /
    • v.23 no.10
    • /
    • pp.1288-1294
    • /
    • 2013
  • Knowledge of morphological changes in eel larvae is very important for artificial rearing of eel larvae. In this study, we investigated the morphological structure of the head region and histological changes of the eye retina in artificially reared larvae at various stages and in glass eel just after metamorphosis. Structural changes were observed in the upper jaw (maxilla) and the lower jaw (mandible) after 100 dah (day after hatchery) and after metamorphosis. Teeth had degenerated by the time of completion of metamorphosis. Major histological changes observed in the eye retina were the formation of the outer plexiform layer and the outer nuclear layer from 100 dah larva and a change in the rod cell layer after metamorphosis. The cornea was not observed at 10 dah in the eel larva. More information is needed on the early developmental stages of eel larvae to enable mass production of glass eels. The results obtained in the present research will be useful when developing novel rearing programs for eel larvae.

Morphological Changes During Starvation in Early Developmental Stages of Spotted Sea Bass, Lateorabrax sp. I. Post-larval Stage (점농어 Lateorabrax sp. 초기 발육 단계에 있어서의 기아시 형태 변화-I. 후기 자어기)

  • Myoung, Jung-Goo;Park, Chul-Won;Kim, Min-Suk;Kim, Jong-Man;Kang, Chung-Bae;Kim, Yong-Uk
    • Korean Journal of Ichthyology
    • /
    • v.9 no.1
    • /
    • pp.15-21
    • /
    • 1997
  • The influence of delayed(1, 2, 3, 4 days) feeding and starvation on morphological change and survival rate of the spotted sea bass larvae was examined at the KORDI laboratories which located at Poryong Power Plant, Poryong-gun, Chungchongnam-do in November, 1996. 1. The larvae of spotted sea bass began to feed on rotifers at 5 days after hatching. In case of non-feeding, all of the larvae died at 9 days after hatching. The larvae which fed 1 day after the normal first feeding schedule(1 day delayed) grew normally and 2 days delayed groups showed 5.3% in survival rate at 9 days after hatching. In case of non-feeding and 3 or 4 days delayed groups, all of the larvae died between 9 and 10 days after hatching. 2. In case of non-feeding, total length of the larvae decreased gradually. 3. The percente ratio of gut height and mytome height to standard length in starved larvae has declined most rapidly compare to other demensions during the non-feeding period. The percente ratio of gut height to mytome height had also difference between unfed and fed larvae. At 9 days after hatching, the ratio of that between fed and unfed larvae were 84.5 % and 52.4 %, respectively. 4. The morphology of starving larvae were characterized as sharpened jaw, projected edge of lower part of clavicle and bending trunk with slenger gut.

  • PDF

Morphology of Tooth and Smad4 Expression in NFI-C Deficient Mouse (Nuclear Factor I-C 결손생쥐에서 치아의 형태학적 변화와 Smad4의 발현)

  • Bae, Hyun-Sook;Kim, Hye-Mi;Cho, Young-Sik;Park, Su-Jin;Choi, Moon-Sil
    • Journal of dental hygiene science
    • /
    • v.10 no.5
    • /
    • pp.395-401
    • /
    • 2010
  • Over expression of TGF-${\beta}1$ revealed the same phenotype as NFI-C deficient mouse. It has been reported that NFI-C deficient mice demonstrated abnormal odontoblast differentiation and aberrant dentin formation during root development. In the present study, in order to investigate the histological differences between wild type (WT) mouse and NFI-C deficient mouse, we compared morphological characteristics and smad4 expression between those mice. Hematoxyline-eosin (H-E) staining was used to investigate morphological changes and immunohistochemistry was also performed to observe the Smad4 expression pattern. In H-E staining, incisor of NFI-C deficient mouse showed an open area in the lingual root, irregular odontoblasts and osteodentin. Also, NFI-C deficient mouse showed short root and osteodentin in molar. In addition, Smad4 protein was strongly expressed in NFI-C deficient mouse compared with wild type. These findings suggest that NFI-C deficiency affects odontoblast differentiation and result in the formation of abnormal roots. Therefore, balancing between NFI-C and TGF-${\beta}$ signaling including Smad4 is important for the regulation of normal odontoblast differentiation and dentin formation.

Seminiferous Epithelium Cycle of Apodemus speciosus peninsulae (흰넓적다리 붉은쥐(Apodemus speciosus peninsulae)의 세정관 상피주기)

  • Kim, Mi-Jin;Lee, Jung-Hun
    • Development and Reproduction
    • /
    • v.13 no.1
    • /
    • pp.25-33
    • /
    • 2009
  • The cycle of the seminiferous epithelium and development of spermatids of Apodemus speciosus peninsulae were observed using a light microscope. On the basis of developing spermatocyte and spermatid, the cycle of the seminiferous epithelium was divided into 9 stages. Type Ad spermatogonia were appeared in all stages ($I{\sim}IX$). The Ap, In, and B types of spermatogonia were appeared from stage I, II and III, and IV, respectively. In prophase of first meiosis, the leptotene spermatocytes appeared from stage V and VI, zygotene spermatocytes from stages I, II, VII, VIII, and IX, pachytene spermatocytes from stage III to VII, diplotene spermatocytes in the stage VIII, and secondary spermatocytes in stage IX. On the basis of morphology of spermatid head, developing of nuclear and acrosome and the morphological change of cytoplasm, the developing of spermatids was divided into 12 steps. Considering all the results, A. s. peninsulae displayed very similar result with A. agrarius coreae that is allied species when compare correct characters developing of spermatids with spermatogonia and appearance time of the spermatocyte. Appearance time of the same cell and number of spermatogonial generation was thought that characters of the species, and information may be useful in identifying the species.

  • PDF