• Title/Summary/Keyword: determination of hydrogen peroxide

Search Result 76, Processing Time 0.03 seconds

Electrochemical Properties of Biosensor with Butyl Rubber Binder (부틸고무를 결합재로 사용한 바이오센서의 전기화학적 성질)

  • Choi, Sei-Young;Yoon, Kil-Joong
    • Elastomers and Composites
    • /
    • v.41 no.4
    • /
    • pp.231-237
    • /
    • 2006
  • An enzyme electrode bound by butyl rubber was newly constructed for the determination of hydrogen peroxide and for the practical application as a biosensor. Then its electrochemical properties were investigated. It produced a hundreds-fold increased signal compared to the plant or animal tissue based biosensor studied previously and could be run at between $0.0{\sim}-1.00\;V$(vs. Ag/AgCl). The relationship between signal and electrode potential was linear in the experimental range of potential. It showed a detection limit of $3.0{\times}10^{-4}\;M$ and a very good linearity of Lineweaver-Burk plot giving the proof of a good enzyme immobilization. Especially, both the reproducibility of signal current due to its high sensitivity and mechanical stability presented a new possibility for the practical use of biosensor bound with butyl rubber.

Determination of Biogenic Amines using an Amperometric Biosensor with a Carbon Nanotube Electrode and Enzyme Reactor (Carbon Nanotube 전극과 효소반응기로 구성된 Amperometric Biosensor를 이용한 Biogenic Amines 검출)

  • Kim, Jong-Won;Jeon, Yeon-Hee;Kim, Mee-Ra
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.20 no.5
    • /
    • pp.735-742
    • /
    • 2010
  • Biogenic amines are synthesized by microbial decarboxylation for the putrefaction or fermentation of foods containing protein. Although biogenic amines such as histamine, tyramine, and putrescine are required for many physiological functions in humans and animals, consumption of high amounts of biogenic amines can cause toxicological effects, including serious gastrointestinal, cutaneous, hemodynamic, and neurological symptoms. In this study, a novel amperometric biosensor wasdeveloped to detect biogenic amines. The biosensor consisted of a working electrode, a reference electrode, a counter electrode, an enzyme reactor with immobilized diamine oxidase, an injector, a peristaltic pump and a potentiostat. A working electrode was fabricated with a glassy carbon electrode (GCE) by coating functionalized multi-walled carbon nanotubes (MWCNT-$NH_2$) and by electrodepositing Prussian blue (PB) to enhance electrical conductivity. A sensor system with PB/MWCNT-$NH_2$/GCE showed linearity in the range of $0.5 {\mu}M{\sim}100 {\mu}M$ hydrogen peroxide with a detection limit of $0.5 {\mu}M$. The responses for tyramine, 2-phenylethylamine, and tryptamine were 95%, 75%, and 70% compared to that of histamine, respectively. These results imply that the biosensor system can be applied to the quantitative measurement of biogenic amines.

Applicability of CCT-ICP-MS for the Determination of Trace Elements in Airborne Particulate Matters (CCT-ICP-MS의 대기분진내 미량원소분석에 대한 적용성)

  • 임종명;이진홍;서만철
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.3
    • /
    • pp.397-409
    • /
    • 2004
  • There has been few studies of either domestic or international to apply CCT-ICP-MS for the precise analysis of As and Cr components associated with airborne particulate matter. To date, the use of CCT-ICP-MS is strongly recommended for the accurate analysis of the toxic trace metals; this is because CCT-ICP-MS technique prevents polyatomic spectral interferences involved in the determination of As and/or Cr components. Taking advantage of CCT-ICP-MS technique, the measurements of about 20 metals were undertaken in this study. The standard reference material (NIST SRM 2783) was used for analytical quality control. To improve analytical accuracy and of acid efficiency, we selected nitric acid based on a test of three kinds of acid for microwave digestion method 1 ) nitric acid. 2) nitric acid and hydrogen peroxide. and 3) nitric acid and perchloric acid. When this method was employed, relative errors to SRM values of Al, As, Cr Fe, Mg, Mn, Pb, Sb, V, and Zn fell below 20%, while those or Ca, Si, and Ti were higher than 20%. The overall results of our study show that the concentrations of As and V determined by CCT-ICP-MS were satisfied with the certificated values within a relative error of 20e1c, whereas those determined by ICP-MS were 10 times higher than the certificated values.

Development of Novel Method for the Detection of Microcystin Using Chemiluminescence Immunochromatography

  • Pyo, Dong-Jin;Yoo, Ji-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.149-152
    • /
    • 2011
  • A new chemiluminescence immunochromatographic analysis system with high sensitivity and high reproducibility was developed for the determination of microcystins (MCs) in water. Horse radish peroxidase (HRP) labeled microcystin monoclonal antibody was used for the sensitive chemiluminescence detection. The chemiluminescence immunochromatographic analysis system was composed of microcystin LR (MCLR)-monoclonal antibody (mAb)-Horse Radish Peroxidase (HRP) conjugate, MCLR-BSA conjugate, luminol, hydrogen peroxide mixture solution, an immunochromatographic assay strip and luminometer. To detect the concentration of microcystins in water, we utilized one spot analysis of the strip instead of flow type analysis. We could detect the microcystins in water at a concentration as low as 9.45 pg/mL with the chemiluminescence (CL) detection.

The Role of Sphingolipids Cycle in Hydrogen Peroxide-Induced Apoptosis in HL-60 Cells

  • Son , Jung-Hyun;Lee, Jae-Ick;Yang , Ryung;Kim, Dong-Hyun
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.213.1-213.1
    • /
    • 2003
  • Sphingolipids and their metabolites are highly bioactive molecules that affect various cellular functions including differentiation, cellular senescence, apoptosis, and proliferation when added exogenously, or elevated intracellularly by turnover of complex sphingolipids or synthesis from de novo pathway. We are investigating the relationship of sphingolipids cycle in apoptosis early events. A new column liquid chromatography- tandem mass spectrometry (LC/MS/MS) in combination with multiple reaction monitoring (MRM) method was developed for the rapid, simultaneous and quantitative determination of unambiguous detecting sphingolipids in cells. (omitted)

  • PDF

Determination of L-Alanine Using Silver Nanoparticles Chemiluminescence System (은 나노입자를 이용한 화학발광법에 의한 L-alanine의 정량)

  • Jo, Hae Jin;Jang, Taek Gyun;Choi, Jong Ha;Suh, Jung Kee;Jeon, Chi Wan;Kim, Young Ho;Lee, Sang Hak
    • Applied Chemistry
    • /
    • v.15 no.1
    • /
    • pp.37-40
    • /
    • 2011
  • A chemiluminescent method with silver nanoparticles for determination of L-alanine has been presented. The chemilumiscence intensity was further enhanced by silver nanoparticles in the luminol system by its catalytic role. The silver nanoparticles enhanced chemiluminescent method is applicable for the determination of an amino acid such as alanine. When alanine was introduced to the luminol system with silver nanoparticles, chemiluminescence intensity was reduced with the concentration of the added alanine. The effects of pH, concentrations of luminol, hydrogen peroxide and silver nanoparticles on the chemiluminescence intensity were investigated. The calibration curve for L-alanine was linear over the range from 6.60×10-8 M to 4.00×10-7 M, coefficient of correlation was 0.996 and detection limit was 3.5×10-9 M under the optimal conditions of 4.0×10-3 M, 4.0×10-2 M, 4.0×10-4 M, 12.8 for the concentration of luminol, H2O2, silver nanoparticles and pH, respectively.

Determination of Glucose in Whole Blood by Chemiluminescence Method (화학발광법에 의한 전혈 중의 당 정량)

  • Lee, Sang Hak;Choi, Sang Seob
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.3
    • /
    • pp.223-229
    • /
    • 2001
  • A method for the determination of glucose in human whole blood by chemiluminescence method using a stopped flow injection system has been studied. The method is based on the differences in the chemiluminescence intensities of luminol due to the different amounts of hydrogen peroxide produced from the glucose oxidase catalyzed reaction. The enzyme reactor was prepared by immobilization of glucose oxidase on aminopropyl glass beads and the chemiluminescence from a flow cell was measured by means of an optical fiber bundle. In order to obtain the optimum experimental conditions, effects of pH for the chemiluminogenic solution and enzyme reactor, flow rate and temperature on the chemiluminescence intensity were investigated. The calibration curve obtained under optimum experimental conditions was linear over the range from $1.0{\times}10^{-1}$ mM to 7.0 mM and the detection limit was $6.0{\times}10^{-2}$ mM. The proposed method was applied to the determination of glucose in whole human blood sample and the results were compared with those obtained by an official method. The present method was also evaluated by the results of recovery experiments.

  • PDF

Selective determination of mercury (II) ion in aqueous solution by chemiluminescence method (화학발광법에 의한 수용액 중의 선택적 수은(II) 이온 정량)

  • Kim, Kyung-Min;Jang, Taek-Gyun;Kim, Young-Ho;Oh, Sang-Huyb;Lee, Sang-Hak
    • Analytical Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.243-248
    • /
    • 2011
  • A selective determination method of mercury (II) ion in aqueous solution by luminol-based chemiluminescence system (luminol CL system) has been developed. Determination of metal ions such as copper (II), iron (III), chromium (III) ion in solution by the luminol CL system using its catalytic role in the reaction of luminol and hydrogen peroxide has been reported by several groups. In this study, the catalytic activity of mercury (II) ion in the reaction of luminol and hydrogen peroxide was observed by the enhanced CL intensity of the luminol CL system. Based on this phenomenon, experimental conditions of the luminol CL system were investigated and optimized to determine mercury (II) ion in aqueous solution. While mercury (II) ion in mixed sample solution containing mercury (I) and (II) ions highly enhanced the CL intensity of the luminol CL system, the mercury (I) ion could not enhanced the CL intensity. Thus selective determination of the mercury (II) ions in a mixture containing mercury (I) and (II) ions could be achieved. Each concentration of mercury (I) and (II) ions in aqueous solution can be obtained from the results of the CL method that give the concentration of only mercury (II) ion and the inductively coupled plasma (ICP) method that give the total concentration of mercury ions. On the optimized conditions, the calibration curve of mercury (II) ion was linear over the range from $1.25{\times}10^{-5}$ to $2.50{\times}10^{-3}M$ with correlation coefficient of 0.991. The detection limit of mercury (II) ion in aqueous solution was calculated to be $1.25{\times}10^{-7}M$.

Determination of quinine in aqueous solution by chemiluminescence method (화학발광법에 의한 수용액 중의 퀴닌 정량)

  • Lee, Hyun-Sook;Kim, Tae-Yeon;Choi, Kyoung-Hye;Karim, Mohammad Mainul;Bae, Hyun-Sook;Lee, Sang-Hak
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.317-322
    • /
    • 2006
  • A method to determine quinine in aqueous solution by chemiluminescence method using a stopped flow system has been studied. The method is based on the increased chemiluminescence intensity with the addition of quinine to a solution of lucigenin and hydrogen peroxide. The effects of KOH concentration, flow rate of reagents, $H_{2}O_{2}$ concentration used for the masking of quinine on the chemiluminescence intensity have been investigated. The calibration curve for quinine was linear over the range from $1.0{\times}10^{-7}$ M to $1.0{\times}10^{-3}$ M, coefficient of correlation was 0.993 and the detection limit was $3.0{\times}10^{-8}$ M under the optimal experimental conditions of 1.0 M, 1.5 M, 3.0 mL/min for the concentration of $H_{2}O_{2}$, KOH and flow rate of reagents, respectively.

Direct electrochemistry of hemoglobin at carbon electrode modified with lipid film and its application as a $H_{2}O_{2}$ sensor (Lipid Film에 수식된 헤모글로빈의 전기화학적 특성과 $H_{2}O_{2}$응답특성)

  • Lee, Dong-Yun;Park, Sang-Hyun;Choi, Yong-Sung;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.93-94
    • /
    • 2006
  • In this research, the enhancement of electron-transfer activity of hemoglobin (Hb) in dodecanoic acid film was investigated for the first time. This type of composite film was made on glassy carbon electrode by casting method. Cyclic voltammetric result of the modified electrode displays a well defined redox peaks which was attributed to the direct electrochemical response of Rb. Our results illustrate that Rb exchange electrons directly with electrode and exhibits the characteristics of peroxidase. When we apply this modified electrode as a biosensor, it gives excellent performances in the electrocatalytic reduction of hydrogen peroxide ($H_{2}O_{2}$). Through the optimal conditions, the proposed biosensor shows the linear range for H2O2 determination was from $1{\times}10^{-5}$ to $1.25{\times}10^{-4}mol/L$ with a detection limit of $1{\times}10^{-7}mol/L$. The biosensor retained more than 90% of the initial response after 14 days.

  • PDF