• Title/Summary/Keyword: detectors

Search Result 1,429, Processing Time 0.033 seconds

Efficient 3D Scene Labeling using Object Detectors & Location Prior Maps (물체 탐지기와 위치 사전 확률 지도를 이용한 효율적인 3차원 장면 레이블링)

  • Kim, Joo-Hee;Kim, In-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.11
    • /
    • pp.996-1002
    • /
    • 2015
  • In this paper, we present an effective system for the 3D scene labeling of objects from RGB-D videos. Our system uses a Markov Random Field (MRF) over a voxel representation of the 3D scene. In order to estimate the correct label of each voxel, the probabilistic graphical model integrates both scores from sliding window-based object detectors and also from object location prior maps. Both the object detectors and the location prior maps are pre-trained from manually labeled RGB-D images. Additionally, the model integrates the scores from considering the geometric constraints between adjacent voxels in the label estimation. We show excellent experimental results for the RGB-D Scenes Dataset built by the University of Washington, in which each indoor scene contains tabletop objects.

The Moon's Spectral Irradiance Computation using Relative Positions between the Sun, Moon, and the Satellite (태양, 달, 위성의 위치를 이용한 달의 방사조도 계산)

  • Seo, Seok-Bae;Song, Young-Joo
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.152-162
    • /
    • 2013
  • The spectral irradiance of the Moon is used to monitor the performance of on-board satellite's visible channel detectors. This paper established a method to compute the spectral irradiance of the Moon using the relative positions between the Sun, Moon, and the COMS (Communication, Ocean, Meteorological Satellite), which is generated through the COMS FDS (Flight Dynamics Subsystem). The established computation method is applied to the algorithm which is developed to detect and compensate the degradations of COMS MI (Meteorological Imager) visible channel detectors.

Diagnosing Plant Pipeline System Performance Using Radiotracer Techniques

  • Kasban, H.;Ali, Elsayed H.;Arafa, H.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.196-208
    • /
    • 2017
  • This study presents an experimental work in a petrochemical company for scanning a buried pipeline using $Tc^{99m}$ radiotracer based on the measured velocity changes, in order to determine the flow reduction along a pipeline. In this work, $Tc^{99m}$ radiotracer was injected into the pipeline and monitored by sodium iodide scintillation detectors located at several positions along the pipeline. The flow velocity has been calculated between every two consecutive detectors along the pipeline. Practically, six experiments have been carried out using two different data acquisition systems, each of them being connected to four detectors. During the fifth experiment, a bypass was discovered between the scanned pipeline and another buried parallel pipeline connected after the injection point. The results indicate that the bypass had a bad effect on the volumetric flow rate in the scanned pipeline.

Effects of the decorrelation on the coincidence detection with correlated photons in a parametric down-conversion (매개하향변환 과정에서 발생하는 광자쌍의 상관관계에 따른 동시계수 측정)

  • 김헌오;고정훈;김태수
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.6
    • /
    • pp.431-436
    • /
    • 2001
  • The effect of decorrelation on the coincidence is investigated with correlated photons produced by parametric down-conversion process. The degree of correlation between photon pairs is adjusted by changing the polarization dependent transmissivities of thin glass plate\ulcorner in front of two detectors. It was found that the single counts of each detectors are proportional to the transmissivity and the coincidence is proportional to the product of transmissivities of the glasses in front of two detectors.

  • PDF

Impulsive noise filtering in severely corrupted color images using detection-estimation based approaches (심하게 손상된 칼라 영상의 잡음 검출 방식을 이용한 임펄스 잡음 제거 기술)

  • 이규철;최윤정;손광훈
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.6B
    • /
    • pp.1021-1027
    • /
    • 2000
  • In this paper, we propose two new detection-estimation based algorithms that effectively remove impulsive noises in severely corrupted color images. The existing methods for enhancing corrupted color images with impulsive noises commonly possess the inherent problems of excessive computing time and smoothing out edges. However, since our proposed algorithms classify corrupted pixels first in each channel or in each pixel and then perform marginal or vector median filtering only for them, are computationally efficient and preserve edges well. In addition, since there are no appropriate criteria to evaluate the performance of impulsive noise detectors for color images, the objective comparison of noise detectors is difficult. Thus, we introduce a new efficiency factor to compare the performance of noise detectors in digital color images. Simulation results show that the proposed algorithms perform better than the existing methods in terms of both objective and subjective evaluat ons.

  • PDF

The Phase Sensitivity of the Coincidence Detection in one Output Port of a Mach-Zehnder Interferometer

  • Shin Harim;Kim Henoh;Park Goodong;Kim Taesoo
    • Journal of the Optical Society of Korea
    • /
    • v.9 no.4
    • /
    • pp.169-172
    • /
    • 2005
  • The phase sensitivity of the coincidence detection in one output port of a Mach-Zehnder interferometer is analysed for twin Fock state inputs. Firstly, the ideal detectors with quantum efficiency of unity are assumed for the detection of the output photons. The sensitivity is found out to be independent of the photon number of input light, which means that the Heisenberg limit cannot be reached in the coincidence detection even with ideal detectors. Secondly, the practical detectors with quantum efficiencies less than unity are discussed.

Designing and Performance Testings of Microdot Detectors

  • Cho, Hyo-Sung;Lee, Bong-Soo;Kim, Sin
    • Journal of the Korean Society of Radiology
    • /
    • v.1 no.3
    • /
    • pp.17-21
    • /
    • 2007
  • We describe recent observations and measurements realized with microdot (MDOT) detectors having 50 mm, 100 mm, and 200 mm pitches for 3.7 keV X-rays. A gas gain of $3.1{\times}10^3$ has been measured with 50 mm pitch MDOT at potential difference much lower than those usually obtained with MSGCs. The defocusing effect caused by the existence of the readout lines passing below the insulator layer has been investigated from the drift voltage dependence of the count rate variation and the electric field simulation for all the detectors. Results concerning the spatial resolutions are presented with collimated X-ray beams.

  • PDF

Low Complexity ML Detection Based on Linear Detectors in MIMO Systems

  • Niyizamwiyitira, Christine;Kang, Chul-Gyu;Oh, Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.506-509
    • /
    • 2009
  • This paper studies about reducing the complexity of ML detection in MIMO/V-blast system, based on MMSE and ZF linear detectors. Beforehand, the receiver detects the signal using the linear detector such as ZF or MMSE. Moreover, the next step is to assess whether the signal is reliable or not by verifying the reliability condition, if the latter is reliable then it is the output if not it has to be detected by the advanced detector until the reliability condition is verified.

  • PDF

Prospects of the gravitational wave astronomy

  • Lee, Hyung Mok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.27.4-28
    • /
    • 2021
  • Since the first direct detection of the gravitational waves in 2015, more than 50 events coming from the merging of compact binaries composed of black holes and neutron stars have been observed. The simultaneous detection of gravitational waves and electromagnetics waves from the merging of neutron stars opened up multi-messenger astronomy. The forthcoming observations with better sensitivity by the network of ground based detectors will enrich the gravitational wave source populations and provide valuable information regarding stellar evolution, dynamics of dense stellar systems, and star formation history across the cosmic time. The precision of the Hubble constant from the distance measurement of gravitational sources will improve with more binary neutron star events are observed together with the aftweglows. I will also briefly cover the expected scientiic outcomes from the future detectors that are sensitive to much lower frequenies than current detectors.

  • PDF

Image Quality Evaluation of Medical Image Enhancement Parameters in the Digital Radiography System (디지털 방사선시스템에서 영상증강 파라미터의 영상특성 평가)

  • Kim, Chang-Soo;Kang, Se-Sik;Ko, Seong-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.6
    • /
    • pp.329-335
    • /
    • 2010
  • Digital imaging detectors can use a variety of detection materials to convert X-ray radiation either to light or directly to electron charge. Many detectors such as amorphous silicon flat panels, CCDs, and CMOS photodiode arrays incorporate a scintillator screen to convert x-ray to light. The digital radiography systems based on semiconductor detectors, commonly referred to as flat panel detectors, are gaining popularity in the clinical & hospital. The X-ray detectors are described between a-Silicon based indirect type and a-Selenium based direct type. The DRS of detectors is used to convert the x-ray to electron hole pairs. Image processing is described by specific image features: Latitude compression, Contrast enhancement, Edge enhancement, Look up table, Noise suppression. The image features are tuned independently. The final enhancement result is a combination of all image features. The parameters are altered by using specific image features in the different several hospitals. The image in a radiological report consists of two image evaluation processes: Clinical image parameters and MTF is a descriptor of the spatial resolution of a digital imaging system. We used the edge test phantom and exposure procedure described in the IEC 61267 to obtain an edge spread function from which the MTF is calculated. We can compare image in the processing parameters to change between original and processed image data. The angle of the edge with respect to the axes of detector was varied in order to determine the MTF as a function of direction. Each MTF is integrated within the spatial resolution interval of 1.35-11.70 cycles/mm at the 50% MTF point. Each image enhancement parameters consists of edge, frequency, contrast, LUT, noise, sensitometry curve, threshold level, windows. The digital device is also shown to have good uniformity of MTF and image parameters across its modality. The measurements reported here represent a comprehensive evaluation of digital radiography system designed for use in the DRS. The results indicate that the parameter enables very good image quality in the digital radiography. Of course, the quality of image from a parameter is determined by other digital devices in addition to the proper clinical image.