• Title/Summary/Keyword: detection time

Search Result 8,980, Processing Time 0.038 seconds

A Study on Real-time Face Detection in Video (동영상에서 실시간 얼굴검출에 관한 연구)

  • Kim, Hyeong-Gyun;Bae, Yong-Guen
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.2
    • /
    • pp.47-53
    • /
    • 2010
  • This paper proposed Residual Image detection and Color Info using the face detection technique. The proposed technique was fast processing speed and high rate of face detection on the video. In addition, this technique is to detection error rate reduced through the calibration tasks for tilted face image. The first process is to extract target image from the transmitted video images. Next, extracted image processed by window rotated algorithm for detection of tilted face image. Feature extraction for face detection was used for AdaBoost algorithm.

A novel window strategy for concept drift detection in seasonal time series (계절성 시계열 자료의 concept drift 탐지를 위한 새로운 창 전략)

  • Do Woon Lee;Sumin Bae;Kangsub Kim;Soonhong An
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.377-379
    • /
    • 2023
  • Concept drift detection on data stream is the major issue to maintain the performance of the machine learning model. Since the online stream is to be a function of time, the classical statistic methods are hard to apply. In particular case of seasonal time series, a novel window strategy with Fourier analysis however, gives a chance to adapt the classical methods on the series. We explore the KS-test for an adaptation of the periodic time series and show that this strategy handles a complicate time series as an ordinary tabular dataset. We verify that the detection with the strategy takes the second place in time delay and shows the best performance in false alarm rate and detection accuracy comparing to that of arbitrary window sizes.

Fast Hough Transform Using Multi-statistical Methods (다중 통계기법을 이용한 고속 하프변환)

  • Cho, Bo-Ho;Jung, Sung-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.10
    • /
    • pp.1747-1758
    • /
    • 2016
  • In this paper, we propose a new fast Hough transform to improve the processing time and line detection of Hough transform that is widely used in various vision systems. First, for the fast processing time, we reduce the number of features by using multi-statistical methods and also reduce the dimension of angle through six separate directions. Next, for improving the line detection, we effectively detect the lines of various directions by designing the line detection method which detects line in proportion to the number of features in six separate directions. The proposed method was evaluated with previous methods and obtained the excellent results. The processing time was improved in about 20% to 50% and line detection was performed better in various directions than conventional methods with experimental images.

Real Time Face Detection Using Integer DCT and SVM (Integer DCT와 SVM을 이용한 실시간 얼굴 검출)

  • 박현선;김경수;김희정;정병희;하명환;김회율
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2112-2115
    • /
    • 2003
  • The system for the real time face detection is described in this paper. For face verification, support vector machine (SVM) was utilized. Although SVM performs quit well, SVM has a drawback that the computational cost is high because all pixels in a mask are used as an input feature vector of SVM. To resolve this drawback, a method to reduce the dimension of feature vectors using the integer DCT was proposed. Also for the real time face detection applications, low-complexity methods for face candidate detection in a gray image were used. As a result, the accurate face detection was performed in real time.

  • PDF

REAL-TIME DETECTION OF MOVING OBJECTS IN A ROTATING AND ZOOMING CAMERA

  • Li, Ying-Bo;Cho, Won-Ho;Hong, Ki-Sang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.71-75
    • /
    • 2009
  • In this paper, we present a real-time method to detect moving objects in a rotating and zooming camera. It is useful for camera surveillance of fixed but rotating camera, camera on moving car, and so on. We first compensate the global motion, and then exploit the displaced frame difference (DFD) to find the block-wise boundary. For robust detection, we propose a kind of image to combine the detections from consecutive frames. We use the block-wise detection to achieve the real-time speed, except the pixel-wise DFD. In addition, a fast block-matching algorithm is proposed to obtain local motions and then global affine motion. In the experimental results, we demonstrate that our proposed algorithm can handle the real-time detection of common object, small object, multiple objects, the objects in low-contrast environment, and the object in zooming camera.

  • PDF

The Development of Surface Inspection System Using the Real-time Image Processing (실시간 영상처리를 이용한 표면흠검사기 개발)

  • 이종학;박창현;정진양
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.171-171
    • /
    • 2000
  • We have developed m innovative surface inspection system for automated quality control for steel products in POSCO. We had ever installed the various kinds of surface inspection systems, such as a linear CCD and a laser typed surface inspection systems at cold rolled strips production lines. But, these systems cannot fulfill the sufficient detection and classification rate, and real time processing performance. In order to increase detection and classification rate, we have used the Dark, Bright and Transition Field illumination and area type CCD camera, and fur the real time image processing, parallel computing has been used. In this paper, we introduced the automatic surface inspection system and real time image processing technique using the Object Detection, Defect Detection, Classification algorithms and its performance obtained at the production line.

  • PDF

Real Time Vehicle Detection and Counting Using Tail Lights on Highway at Night Time (차량의 후미등을 이용한 야간 고속도로상의 실시간 차량검출 및 카운팅)

  • Valijon, Khalilov;Oh, Ryumduck;Kim, Bongkeun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.07a
    • /
    • pp.135-136
    • /
    • 2017
  • When driving at night time environment, the whole body of transports does not visible to us. Due to lack of light conditions, there are only two options, which is clearly visible their taillights and break lights. To improve the recognition correctness of vehicle detection, we present an approach to vehicle detection and tracking using finding contour of the object on binary image at night time. Bilateral filtering is used to make more clearly on threshold part. To remove unexpected small noises used morphological opening. In verification stage, paired tail lights are tracked during their existence in the ROI. The accuracy of the test results for vehicle detection is about 93%.

  • PDF

Real-Time Pupil Detection System Using PC Camera (PC 카메라를 이용한 실시간 동공 검출)

  • 조상규;황치규;황재정
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8C
    • /
    • pp.1184-1192
    • /
    • 2004
  • A real-time pupil detection system that detects the pupil movement from the real-time video data achieved by the visual light camera for general purpose personal computer is proposed. It is implemented with three steps; at first, face region is detected using the Haar-like feature detection scheme, and then eye region is detected within the face region using the template-based scheme. Finally, pupil movement is detected within the eye region by convolution of the horizontal and vertical histogram profiling and Gaussian filter. As results, we obtained more than 90% of the detection rate from 2375 simulation images and the data processing time is about 160㎳, that detects 7 times per second.

Semi-Supervised Learning Based Anomaly Detection for License Plate OCR in Real Time Video

  • Kim, Bada;Heo, Junyoung
    • International journal of advanced smart convergence
    • /
    • v.9 no.1
    • /
    • pp.113-120
    • /
    • 2020
  • Recently, the license plate OCR system has been commercialized in a variety of fields and preferred utilizing low-cost embedded systems using only cameras. This system has a high recognition rate of about 98% or more for the environments such as parking lots where non-vehicle is restricted; however, the environments where non-vehicle objects are not restricted, the recognition rate is about 50% to 70%. This low performance is due to the changes in the environment by non-vehicle objects in real-time situations that occur anomaly data which is similar to the license plates. In this paper, we implement the appropriate anomaly detection based on semi-supervised learning for the license plate OCR system in the real-time environment where the appearance of non-vehicle objects is not restricted. In the experiment, we compare systems which anomaly detection is not implemented in the preceding research with the proposed system in this paper. As a result, the systems which anomaly detection is not implemented had a recognition rate of 77%; however, the systems with the semi-supervised learning based on anomaly detection had 88% of recognition rate. Using the techniques of anomaly detection based on the semi-supervised learning was effective in detecting anomaly data and it was helpful to improve the recognition rate of real-time situations.

PREDICTION OF THE DETECTION LIMIT IN A NEW COUNTING EXPERIMENT

  • Seon, Kwang-Il
    • Journal of The Korean Astronomical Society
    • /
    • v.41 no.4
    • /
    • pp.99-107
    • /
    • 2008
  • When a new counting experiment is proposed, it is crucial to predict whether the desired source signal will be detected, or how much observation time is required in order to detect the signal at a certain significance level. The concept of the a priori prediction of the detection limit in a newly proposed experiment should be distinguished from the a posteriori claim or decision whether a source signal was detected in an experiment already performed, and the calculation of statistical significance of a measured source signal. We formulate precise definitions of these concepts based on the statistical theory of hypothesis testing, and derive an approximate formula to estimate quickly the a priori detection limit of expected Poissonian source signals. A more accurate algorithm for calculating the detection limits in a counting experiment is also proposed. The formula and the proposed algorithm may be used for the estimation of required integration or observation time in proposals of new experiments. Applications include the calculation of integration time required for the detection of faint emission lines in a newly proposed spectroscopic observation, and the detection of faint sources in a new imaging observation. We apply the results to the calculation of observation time required to claim the detection of the surface thermal emission from neutron stars with two virtual instruments.