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ABSTRACT

When a new counting experiment is proposed, it is crucial to predict whether the desired source
signal will be detected, or how much observation time is required in order to detect the signal at a
certain significance level. The concept of the a priori prediction of the detection limit in a newly
proposed experiment should be distinguished from the a posteriori claim or decision whether a source
signal was detected in an experiment already performed, and the calculation of statistical significance of a
measured source signal. We formulate precise definitions of these concepts based on the statistical theory
of hypothesis testing, and derive an approximate formula to estimate quickly the a priori detection limit
of expected Poissonian source signals. A more accurate algorithm for calculating the detection limits in
a counting experiment is also proposed. The formula and the proposed algorithm may be used for the
estimation of required integration or observation time in proposals of new experiments. Applications
include the calculation of integration time required for the detection of faint emission lines in a newly
proposed spectroscopic observation, and the detection of faint sources in a new imaging observation.
We apply the results to the calculation of observation time required to claim the detection of the surface
thermal emission from neutron stars with two virtual instruments.

Key words : methods: statistical – methods: data analysis – instrumentation: miscellaneous

I. INTRODUCTION

Considering a measurement of Gaussian signals in
the presence of background that has been indepen-
dently measured, the well-known “signal-to-noise” ratio
(S/N or SNR), is usually estimated to assess the sta-
tistical significance of the background-subtracted sig-
nal (e.g., Huffman 1992; Bevington & Robinson 2002).
Gehrels (1986) and Ebeling (2003, 2004) investigated
Poisson confidence limits for small numbers of events
in astrophysical data, and derived approximate formu-
lae for the confidence limits. Feldman & Cousins (1998)
clearly illustrated the discrepancies between the treat-
ment of upper confidence limits for null results and
two-sided confidence intervals for non-null results, com-
monly found in high energy physics literatures, and de-
veloped a confidence belt construction based on the “or-
dering principle” which unifies the treatment of upper
confidence limits and of confidence intervals. Its im-
provements also have been proposed by several authors
(Giunti 1999; Roe 1999). These investigations are re-
lated to the a posteriori claim whether a source signal
was detected in an already performed experiment.

Now, suppose that we have a theory that predicts a
certain amount of source signal, and from instruments
we predict how much background will be observed. One
would like to know whether the numbers of these ex-
pected events will allow, in advance, a particular exper-
iment to claim a discovery at a certain statistical signif-
icance level. The “signal-to-noise” ratio is used widely
as a measure of detection capability. However, the ob-

served number of source-signal events may have only
50% chance (if the events were drawn from the sym-
metric probability distribution centered at their “true”
mean value) to exceed the claimed significance level, as
illustrated in Figure 1.

Here, we have to discriminate two concepts on the
detection capabilities: one related to the a posteriori
claim or decision whether a source signal was observed
in the previously preformed experiment, and the other
related to the a priori prediction of the detection limit
in a newly proposed, but not yet performed, experi-
ment. The “signal-to-noise” ratio and the works done
by particle physicists (e.g., Feldman & Cousins 1998)
are, in fact, related with the a posteriori decision.

In his pioneering work, Currie (1968) clearly demon-
strated the differences between two concepts of de-
tectability, namely the a posteriori “critical” and a pri-
ori “detection” limits, which are firmly based on the
statistical theory of hypothesis testing, and presented
working formulae for the conventional assumption of
a Gaussian signal distribution (see also, Currie 1972,
1995). More recently, Hernandez (1996) also empha-
sized that the “detectability” is not at all the same
as “deciding” whether a real signal has been detected,
given an observed signal, and proposed basically the
same concepts as the “critical” and “detection” lim-
its defined in Currie (1968, 1972, 1995). Bityukov &
Krasnikov (1999, 2000) also noted the difference be-
tween two concepts and derived a simple but useful
formula for the detection limit by applying Gaussian
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Fig. 1.— Conventional definition of “detection” limit (µd)
based on the “signal-to-noise” ratio (SNR), in which the
detection limit is claimed to be the SNR (usually, = 3 or
5) times the standard deviation σ. Here, µb denotes the
mean value of background. There will be only 50% chance
(gray area) for the measured number of events to exceed
the claimed significance level, SNR.

approximation to Poission signals.
However, astronomers still often use the “signal-to-

noise” ratio, which is the statistical significance of an
observed signal, for testing the possibility of detecting a
desired source signal in a new proposal (e.g., EUVE GO
Center 1997; Biretta & Heyer 2001). The observed sig-
nificance level would be lower than the expected one,
or the signal may not be even observed at all, when
its detection is claimed using the signal-to-noise ratio,
mainly due to the statistical fluctuations of the source
and background signals. In fact, the required integra-
tion time, when the signal-to-noise ratio is used, is un-
derestimated, and the detection of the signal could not
be guaranteed at the claimed confidence level. Correct
assessment of the detection capability is crucial espe-
cially in an experiment to be proposed for the detection
of a faint source.

In this paper, these two concepts defined in Currie
(1968) are summarized, and the approximate equations
evaluating the detection capabilities for Poisson signals
are found, based on these definitions. We propose an
algorithm, simple but still accurate, for the evaluation
of the detection limits for a given significance level. We
also apply the results to the prediction of observation
time required to detect thermal emission from the sur-
faces of neutron stars with two virtual instruments, one
with the same effective area as the Lexan (100Å) band
of the Extreme Ultraviolet Explorer (EUVE) scanning
telescopes, and the other with 10 times higher effective
area.
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Fig. 2.— Definitions of “critical” (or decision) limit (Nc)
and “detection” limit (µd) based on hypothesis testing.

II. DEFINITIONS OF CRITICAL AND DE-
TECTION LIMITS

Throughout this paper, the symbols µ, N , and σ will
be used to denote the “true” mean, the “observed” or
“random” values, and the standard deviation, respec-
tively. The background and source signal values will be
denoted using the subscripts ‘b’ and ‘s’, respectively.

Based on the statistical theory of hypothesis testing,
two limiting levels have been defined by Currie (1968,
1972, 1995): (1) the “critical” or “decision” limit Nc,
the signal level above which an observed signal may
be reliably recognized as “detected” a source signal,
and (2) the “detection” limit or “minimum detectable”
limit µd, the “true” mean value of the source signal
that may be expected a priori to lead to detection in
a planned and specified experiment. The first aspect is
thus related to the making of an a posteriori “decision”
based upon the observation and a definite criterion for
detection. The second aspect is related to the making
of an a priori “prediction” of the detection capabilities
of a given measurement process.

We use a classic one-sided test to define the mini-
mum (“critical”) threshold Nc that should be accepted
as a real source signal with a certain probability (1−α),
and then define the “detection” threshold as being the
theoretical level that its measured signal wouldn’t fall
below Nc with another probability (1− β). In hypoth-
esis testing, decisions are subject to two kinds of error:
deciding that the source signal is present when it is not
(with probability α; error of the first kind), and failing
to decide that it is present when it is (with probability
β; error of the second kind). The decision “detected”
or “not detected” is made by comparison of the ob-
served quantity (N) with the “critical value” (Nc) of
the relevant distribution, such that the probability of
exceeding Nc is no greater than α if the true source sig-
nal is absent (µs = 0; null hypothesis H0). Thus, the
probability distribution of possible events, when the
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true source signal is absent, intersects N = Nc such
that a fraction, 1 − α, corresponds to the (correct) de-
cision, “not detected”. The above definition of Nc can
be expressed as:

P [N > Nc|µb] ≤ α, (1)

where P [X|µ] denotes a probability pertaining to a ran-
dom variable X with a true mean value µ. Generally,
the equation is stated as an equality, but the inequal-
ity is also given to accommodate discrete distributions,
such as Poisson distributions, where not all values of α
are possible. The Nc is defined as the minimum value
which satisfy the above equation, when the discrete dis-
tributions are concerned.

The “detection limit” µd is defined as the true value
of the source signal having a 1− β probability of being
detected when the source signal is present (µs = µd; al-
ternative hypothesis H1), and with a maximum α prob-
ability of falsely interpreting the background event as
source signal. The detection limit is thus the true value
of the source signal for which the probability that the
observed value N does not exceed Nc is β. The defini-
tion of µd can be expressed as

P [N ≤ Nc|µd + µb] = β. (2)

The relationship between the critical and detection
limits is illustrated in Figure 2. It should be noted
that the critical value Nc need not be defined either as
the intersection point of two probability distribution
curves, where the distribution functions have the same
values (equal probability test), or as the point where
the errors (α, β) are the same (equal-tailed test).

Since almost all the distributions we might encounter
become normally distributed as the mean value gets
large, it might be natural to define the statistical sig-
nificance z0 of an observed signal N0 such that P [N >
N0|µb] ≡ P [Z > z0], where Z denotes a random vari-
able following the standard normal distribution with
zero mean and unit variance, as defined in Gehrels
(1986), Narsky (2000), and Ebeling (2003). The value
z0 is then the equivalent Gaussian number of σ corre-
sponding to the significance level, and is a function of
N0 and µb.

The definition of the statistical significance z0 for
a given signal N0 may be represented as a functional
form, Ŝc(N0, µb) = z0. Inversely, the function Ŝc(N0, µb)
is now an estimator for the calculation of observed sig-
nal N0 given a statistical significance z0. Then, the
critical limit Nc for a given error probability α of the
first kind can be found using the formula, Ŝc(Nc, µb) =
z1−α, where z1−α denotes the (1 − α)-quantile of the
standard normal distribution. The q-quantile of a dis-
tribution, xq, is defined by P [x ≤ xq] = q (0 ≤ q ≤ 1).
Similarly, the significance z′0 of the true mean value
µs = µ0 may be defined by P [N ≤ Nc|µ0 + µb] ≡
P [Z ≥ z′0]. Again, the definition of the significance z′0
can be represented by Ŝd(Nc, µ0 +µb) = z′0. Then, the

true mean detection limit µd, given a significance z1−β ,
can be found by Ŝd(Nc, µd +µb) = z1−β , and the func-
tion Ŝd is an estimator of the detection limit µd for the
given significance z1−β .

The previous definitions of the critical and detection
limits can be easily understood in the case of Gaussian
signals. Given the significances z1−α and z1−β , the
critical and detection limits are simply given by

Nc = µb + z1−ασb, and (3)
µd + µb = Nc + z1−βσs+b, (4)

where σb and σs+b denote the standard deviations of
the background and total (source+background) signals,
respectively. These result in

µd = z1−ασb + z1−βσs+b

= z1−ασb + z1−β

√
σ2

s + σ2
b. (5)

Here, σs is the standard deviation of the source signal.
In the case of Gaussian approximation of Poisson sig-
nals, the equation becomes implicit in terms of µd. Its
explicit solution and approximations are described in
Appendix B.

III. DETECTION LIMIT FOR POISSON SIG-
NALS

If a random variable N follows a Poisson distribution
with a true mean µ, then for any non-negative integer
n, the probability that N = n is given by

P [N = n|µ] =
e−µµn

n!
. (6)

There may be no value Nc, for a given µ, that satis-
fies the equality in equation (1) exactly, because the
observed or random variable N assumes only discrete
values. The critical value in this case is defined as the
smallest value Nc such that P [N > Nc|µb] ≤ α, and
thus

P [N > Nc|µb] ≤ α < P [N > Nc − 1|µb]. (7)

The exact results for Poisson distributions are then
easily calculated with incomplete gamma functions.
The Poisson distribution is also related to a chi-square
distribution by the formulae,

P [N ≤ n|µ] = P [χ2(2n + 2) ≥ 2µ], and
P [N > n|µ] = 1 − P [N ≤ n|µ]

= P [χ2(2n + 2) < 2µ], (8)

where χ2(ν) denotes a chi-square random variable with
ν degrees of freedom (Abramowitz & Stegun 1972). Us-
ing these relationships between the Poisson and chi-
square distributions, the critical and detection limits
for the Poisson signal can be obtained from:

P [χ2(2Nc + 2) < 2µb] ≤ α < P [χ2(2Nc) < 2µb], (9)
β = P [χ2(2Nc + 2) ≥ 2(µd + µb)]. (10)
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Table 1.
ritical and detection limits for Poisson

signals when α = β = 0.05.

µb Nc µd + µb

0.000 – 0.051 0 2.996
0.051 – 0.355 1 4.744
0.355 – 0.818 2 6.296
0.818 – 1.366 3 7.754
1.366 – 1.970 4 9.154
1.970 – 2.613 5 10.513
2.613 – 3.285 6 11.842
3.285 – 3.981 7 13.148
3.981 – 4.695 8 14.435
4.695 – 5.425 9 15.705
5.425 – 6.169 10 16.962
6.169 – 6.924 11 18.208
6.924 – 7.690 12 19.443
7.690 – 8.464 13 20.669
8.464 – 9.246 14 21.887
9.246 – 10.036 15 23.097

10.036 – 10.832 16 24.301
10.832 – 11.634 17 25.499
11.634 – 12.442 18 26.692
12.442 – 13.255 19 27.879
13.255 – 14.072 20 29.062
14.072 – 14.894 21 30.240
14.894 – 15.720 22 31.415
15.720 – 16.549 23 32.585
16.549 – 17.382 24 33.752
17.382 – 18.219 25 34.916
18.219 – 19.058 26 36.077
19.058 – 19.901 27 37.234
19.901 – 20.746 28 38.389
20.746 – 21.594 29 39.541

It is clear from equation (9) that the true mean values
of background signals in the range,

1
2
χ2

α(2Nc) < µb ≤ 1
2
χ2

α(2Nc + 2) (Nc = 0, 1, 2, . . .),

(11)
yield the same critical limit Nc. Here, χ2

q(ν) denotes the
q-quantile of the chi-square distribution. The detection
limit µd of the source signal is then found using the
following formula:

µd + µb =
1
2
χ2

1−β(2Nc + 2). (12)

Now, we can tabulate the range of background val-
ues µb and the detection limits for given Nc, α, and β
values, using the equations (11) and (12). The numer-
ical solutions, provided to 3 decimal places, are given
in Table 1 for the case α = β = 0.05. In Figure 3 are
shown the exact solution ranges, plotted as the discon-
tinuous lines. The breaks in the table and the figure
occur at µb = 1

2χ2
α(2Nc) and 1

2χ2
α(2Nc + 2).

Fig. 3.— Critical and detection limits for Poisson signals
when α = β = 0.05. The exact solution ranges are shown
as discontinuous lines, and the approximate solutions that
enclose the exact solutions as continuous lines.

The figure also shows two approximate solutions,
found in Appendix A, as the continuous lines. In the
appendix, we obtained two approximate estimators for
the critical limit, Ŝup

c and Ŝlow
c , corresponding to the

upper and lower bounds in equation (9). By substitut-
ing these approximations, two approximate estimators
for the detection limit, Ŝup

d and Ŝlow
d , were also found.

The approximations in the figure were then obtained
using these approximate estimators. We also proposed
an approximate estimator, Ŝ∗ ≡

√
µd + µb − √

µb, to
estimate easily the detection limit in the equal-tailed
test (α = β).

IV. APPLICATION: THERMAL EMISSION
FROM NEUTRON STARS’ SURFACES

The integration time or observation time, which is
often required in observational proposals to justify the
detection of faint signals, can be estimated using the
estimator Ŝ∗, suggested in Appendix A, if the source
and background fluxes are given in units of counts per
unit time. The integration time T , required to claim
the detection at a centain confidence level z1−α, is then
given by T = z2

1−α/(
√

Fs + Fb −
√

Fb)2, for a given
source flux Fs and background flux Fb.

As an example, we calculate the observation time to
detect the surface thermal emission from neutron stars,
assuming an instrument with the same effective area as
the EUVE mission. Seon & Edelstein (1998) and Kor-
pela & Bowyer (1998) reported the results of searches
for EUV emission from neutron stars conducted with
the EUVE scanning telescopes. They derived limits to
the temperature of surface thermal radiation from the
objects. Old neutron stars are expected to emit sig-
nificant EUV only with the presence of some form of
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(a)

(b)

Fig. 4.— Observation time required to claim the detection
of surface thermal radiation from neutron stars at the con-
fidence level of 3σ (z1−α = z1−β = 3). The calculation was
performed assuming (a) an instrument with the same effec-
tive area as the Lexan (100Å) band of the EUVE scanning
telescopes, and (b) an instrument with 10 times larger ef-
fective area than the Laxan band. The horizontal lines rep-
resent a typical hydrogen column density of NHI = 5× 1020

cm−2. The symbols ‘m’, ‘hr’, ‘d’, and ‘yr’ represent min-
utes, hours, days, and years, respectively.

reheating mechanism Becker & Trümper 1993). It may
be, thus, valuable, not only as an example of the detec-
tion limit calculation but also as a reference for future
EUV missions, to demonstrate the calculation of ob-
servation time required for the detection of the surface
thermal radiation with the EUVE scanning telescopes.

We estimated the observation time required to claim
the detection of surface thermal emission from neutron
stars, at the confidence level of 3σ (z1−α = z1−β = 3),
for various blackbody temperatures T and absorbing
hydrogen column densities NHI. Figure 4 shows con-
tours of the observation times using the source radius
of 10 km at an object distance of 1 km, the background
count rate of 0.0074 counts/s, averaged over the values
obtained in Seon & Edelstein (1998), and the effective

area of the Lexan (100Å) band of the EUVE scanning
telescope (Bowyer et al. 1996). The figure also shows
the contours of the observation times for an instrument
with 10 times larger effective area than the EUVE scan-
ning telescope. It is found that the emission with tem-
peratures of ∼< 1.0×106 K (for the first instrument) and

∼< 5.0×105 K (for the second instrument), absorbed by
interstellar medium with a hydrogen column density of
NHI = 520 cm−2, can not be detected during the fea-
sible observation time of < 30 days. The results are
consistent with the non-detection of the surface ther-
mal emission of old neutron stars analyzed by Seon &
Edelstein (1998) and Korpela & Bowyer (1998).

V. SUMMARY

We derived the formulae for the calculation of the
“detection limit” of Poisson events, following its correct
definition. Applying an equal-tailed test, in which the
false-identification error probabilities α and β are the
same, the formula

√
µd + µb −

√
µb = z1−β is found to

be a reliable estimator of the detection limit for Poisson
events. An algorithm, simple yet accurate, was also
proposed in Appendix A to estimate Nc and µd, which
used the approximate equations for the critical limit,
and the q-quantile of the chi-square distribution. It is
found that this algorithm gives fairly accurate solutions
for the detection limit µd for any α and β.
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APPENDIX A. Approximations for Poisson sig-
nals

The random variable
√

2χ2(ν) becomes normally
distributed, as ν → ∞, with a mean Z0(ν) ≡

√
2ν − 1{1+

O(ν−2)}, and a variance σ2(ν) ≡ 1+O(ν−1) (Abramowitz
& Stegun 1972). The cumulative chi-square distribu-
tion can thus be approximated as a cumulative normal
distribution, as follows:

P
[
χ2(ν) < χ2

0

]
≈ P

[
Z <

√
2χ2

0 − Z0(ν)
σ(ν)

]
, (A1)

where Z denotes a random variable following the stan-
dard normal distribution. Using this relation, the def-
inition of estimator, and the fact that P [Z < −z] =

P [Z > z] for positive z, equation (9) can be rewritten
with two estimators for the critical limit,

Ŝlow
c < z1−α ≤ Ŝup

c . (A2)

Here, two estimators are then approximately given by

Ŝup
c ≈ Z0(2Nc + 2) −

√
4µb

σ(2Nc + 2)
, and

Ŝlow
c ≈ Z0(2Nc) −

√
4µb

σ(2Nc)
. (A3)

Solving equation (A3) for Nc, a range enclosing the
integral critical limit for a given significance z1−α can
be found using the equation,

N low
c ≤ Nc < Nup

c , (A4)

where the upper and lower bounds are approximately
given by

Nup
c ≈ µb + z1−α

√
µb +

z2
1−α + 1

4
+O(µ−1/2

b ), and

N low
c = Nup

c − 1. (A5)

It should be noted that the N low
c and Nup

c values, cor-
responding to Ŝup

c and Ŝlow
c , respectively, are not nec-

essarily integers, but real numbers. The curves corre-
sponding to N low

c and Nup
c are shown in Figure 3. The

real upper bound Nup
c coincides approximately with

the integer Nc = [Nup
c ] at the mean background value

given by µb = (1/2)χ2
α(2Nc), and the real value N low

c
with integer Nc − 1 at µb = (1/2)χ2

α(2Nc + 2). Here,
the bracket [ ] denotes the largest integer smaller than
or equal to the specified value. It is now clear that
these lower and upper bounds may be considered as
the approximate boundaries enclosing the possible crit-
ical values. Thus, the integer critical value Nc is then
given by [Nup

c ] or [Nup
c ] − 1. Note that the approx-

imate bounds N low
c and Nup

c are slightly higher than
the exact boundaries.

Using Eqs. (10) and (A1), the estimator of detection
limit µd can be expressed as follows:

Ŝd ≈
√

4(µd + µb) − Z0(2Nc + 2)
σ(2Nc + 2)

. (A6)

By substituting two approximations of the critical value
Nc into the above equation, in order to express the
estimator in terms of µb and µd, two approximations
for the estimator are found as follows:

Ŝlow
d ≈ 2

(√
µd + µb −√

µb

)
− z1−α − 1/

√
µb

+O(µ−1
b ),

Ŝup
d ≈ 2

(√
µd + µb −√

µb

)
− z1−α + O(µ−1

b ), and

Ŝlow
d < Ŝd ≤ Ŝup

d . (A7)
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d

b

d

Fig. A1.— Dependences on the mean background value
µb of the true detection significances z1−β , when the ap-

proximate estimators Ŝlow
d and Ŝup

d are used to calculated
the detection limits.

Here, Ŝlow
d and Ŝup

d correspond to Nup
c and N low

c , re-
spectively. The detection limit for a given significance
z1−β is then given by two approximations:

µlow
d ≈ (z1−α + z1−β)2

4
+ (z1−α + z1−β)

√
µb

+O(µ−1/2
b ),

µup
d ≈ µlow

d + 1, and

µlow
d ≤ µd < µup

d . (A8)

Again, µup
d and µlow

d are derived from Ŝlow
d and Ŝup

d ,
respectively. Note that, for the equal-tailed test (α =
β), the approximation µlow

d approaches the detection
limit obtained from the Gaussian approximation shown
in equation (B8).

Figure A1 shows the dependences of the true detec-
tion significances on the mean background value µb,
when the detection limits are calculated using the ap-
proximate limits µlow

d and µup
d . Here, the upper two

curves are found using Ŝlow
d = 3, and the lower two

curves using Ŝup
d = 3. The lowest curve, correspond-

ing to α = β, shows good agreement with the true
significance values, z1−β = 3, as illustrated in Fig-
ure A1. In this equal-tailed test, both approximations
Ŝlow

d = z1−α and Ŝup
d = z1−α in Eq. (A7) result in

√
µd + µb − √

µb = z1−β ignoring the O(µ−1/2
b ) and

lower orders. Thus, the formula Ŝ∗ ≡
√

µs + µb −
√

µb

is suggested as a reliable estimator of the detection limit
µd, when α = β (equal-tailed test). However, the es-
timator Ŝ∗ yields relatively large errors when α ̸= β,
when compared to the equal-tailed test, as can be seen
in Figure A1.

It can be time-consuming to construct a list like Ta-
ble 1, where a critical value Nc and a detection limit
µd are found, corresponding to a given µb. Thus, it is
desirable to construct a simple but accurate algorithm
for estimating the critical and detection limits, which
is applicable even for α ̸= β. For large values of ν, the
quantiles χ2

q(ν) may be approximated using the follow-
ing formula (Abramowitz & Stegun 1972):

χ2
q(ν) ≈ ν

(
1 − 2

9ν
+ zq

√
2
9ν

)3

. (A9)

This formula is useful for estimating the detection limit
for a Poisson signal. Using this approximation and
equation (11), an algorithm for estimating the critical
and detection limits is proposed, as follows:

(a) Compute the critical value Nup
c from equation

(A5).
(b) Set Nc = [Nup

c ] − 1 if µb ≤ 0.5χ2
α(2 [Nup

c ]), or
set Nc = [Nup

c ] if µb > 0.5χ2
α(2 [Nup

c ]). Here, the
α-quantile of the chi-square distribution is calcu-
lated using equation (A9), and the symbol [ ] de-
notes the largest integer smaller than or equal to
the specified value.

(c) Compute µapp
d = 1

2χ2
1−β(2Nc+2)−µb using equa-

tion (A9).

Table A1 shows the critical values, the lower and
upper bounds of the detection limits, and their ap-
proximate solutions µapp

d obtained using the algorithm
above. The errors of the detection limits µapp

d and of
the true significances z1−β are also shown in the last
two columns. The algorithm gives accurate values for
the detection limits and their true significances within
4.5%, even for worst cases listed in Table A1. In fact,
the critical values Nc obtained using this algorithm are
not approximate, and more accurate detection limits
can be also estimated using more accurate formula for
χ2

q.

APPENDIX B. Approximations in the limit
of large mean values

In the limit of large mean values (µ ≫ 1), a Pois-
son distribution approaches a normal distribution with
σ =

√
µ. If the distribution of the signal Ns+b(= Nb)

under H0 is approximately normal with a well-known
standard deviation σs+b(= σb), the critical value Nc

and its estimator Ŝc are then given by, respectively,

Nc = µb + z1−α
√

µb, and Ŝc = (Nc − µb)/
√

µb.(B1)

The minimum detectable source signal µs = µd is
determined implicitly by the following equation:

µd + µb = Nc + z1−β

√
µd + µb. (B2)
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Table A1

Approximate solutions of the critical and detection limits, and their associated errors.

µb [Nup
c ] Nc µlow

d µup
d µapp

d µd ∆µd(%) ∆z1−β(%)

0.0 0 0 1.642 – 2.280 2.303 -1.003 -1.030
0.6 2 2 3.628 6.699 4.709 4.722 -0.274 -0.398
3.0 5 5 6.082 7.905 6.266 6.275 -0.140 -0.209

(a) 10.2 14 14 9.828 11.254 9.922 9.928 -0.052 -0.086
12.0 17 17 10.521 11.912 11.601 11.606 -0.040 -0.072
20.1 26 26 13.134 14.432 13.733 13.736 -0.027 -0.048
29.7 37 37 15.611 16.854 16.380 16.383 -0.019 -0.034
0.0 0 0 2.141 – 2.968 2.996 -0.911 -0.807
0.6 2 2 4.408 7.713 5.684 5.696 -0.202 -0.248
3.0 5 5 7.210 9.138 7.506 7.513 -0.088 -0.113

(b) 10.2 14 14 11.487 12.970 11.683 11.687 -0.027 -0.039
12.0 17 17 12.278 13.722 13.497 13.499 -0.020 -0.031
20.1 26 26 15.261 16.600 15.975 15.977 -0.013 -0.019
29.7 37 37 18.089 19.366 18.974 18.976 -0.008 -0.013
0.0 0 0 2.706 – 2.968 2.996 -0.911 -0.807
0.6 2 2 5.254 8.794 5.684 5.696 -0.202 -0.249
3.0 6 6 8.403 10.437 8.837 8.842 -0.066 -0.095

(c) 10.2 16 16 13.212 14.752 14.098 14.101 -0.020 -0.033
12.0 18 18 14.101 15.597 14.689 14.692 -0.018 -0.029
20.1 28 28 17.454 18.834 18.287 18.289 -0.010 -0.018
29.7 39 39 20.634 21.944 21.238 21.240 -0.007 -0.012
0.0 2 2 9.000 – 10.964 10.870 0.863 0.792
0.6 5 4 13.648 18.937 13.868 13.793 0.547 0.569
3.0 10 9 19.392 22.208 19.230 19.176 0.284 0.343

(d) 10.2 22 21 28.163 30.126 28.596 28.559 0.129 0.181
12.0 24 24 29.785 31.672 30.722 30.687 0.113 0.163
20.1 36 35 35.900 37.581 36.614 36.585 0.079 0.119
29.7 48 47 41.699 43.258 41.793 41.768 0.060 0.092
0.0 2 2 16.000 – 21.489 20.584 4.396 4.402
0.6 5 4 22.197 28.777 25.067 24.394 2.756 2.494
3.0 10 9 29.856 33.249 31.930 31.484 1.417 2.494

(e) 10.2 22 21 41.550 43.827 44.072 43.792 0.640 1.218
12.0 24 24 43.713 45.888 46.782 46.522 0.559 1.218
20.1 36 35 51.866 53.771 54.587 54.377 0.387 1.218
29.7 48 47 59.598 61.341 61.567 61.388 0.290 1.218
0.0 6 6 25.000 – 29.523 28.972 1.903 2.494
0.6 10 9 32.746 40.618 34.330 33.884 1.317 2.494
3.0 18 17 42.321 46.291 45.098 44.783 0.704 1.218

(f) 10.2 32 31 56.937 59.528 58.800 58.575 0.384 1.218
12.0 35 34 59.641 62.105 61.274 61.060 0.350 1.218
20.1 49 48 69.833 71.961 72.522 72.346 0.243 1.218
29.7 63 62 79.498 81.424 81.564 81.411 0.188 1.218

Note.—The critical and detection limits, and their associated errors are calculated
for (a) α = β = 0.1 (z1−α = z1−β = 1.282), (b) α = 0.1, β = 0.05 (z1−β = 1.645),
(c) α = β = 0.05, (d) z1−α = z1−β = 3 (α = β = 0.00135), (e) z1−α = 3, z1−β = 5
(β = 2.980 × 10−7), and (f) z1−α = z1−β = 5.
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Then, the detection limit µd and its estimator are given
by, respectively,

µd = z1−α
√

µb + z1−β

√
µd + µb, and (B3)

Ŝd =
µd − z1−α

√
µb√

µd + µb
. (B4)

After some algebraic manipulation, an explicit formula
for the detection limit of the source signal may be de-
rived:

µd = z1−α
√

µb +
z2
1−β

2

+z1−β

√
µb + z1−α

√
µb +

z2
1−β

4
, (B5)

≈ z1−β(z1−α + z1−β)
2

+(z1−α + z1−β)
√

µb for µb ≫ 1, (B6)

≈ z2
1−β + 2z1−α

√
µb for µb ≪ 1. (B7)

In the case of the equal-tailed test (α = β), the
detection limit becomes

µd = z2
1−α + 2z1−α

√
µb. (B8)

Note that this equation is not an approximation and the
working formula given in Currie (1968), µd = 2.71 +
3.29

√
µb, is obtained for the case α = β = 0.05. Using

the fact that, for Poisson events, µd = 2.996 (see Table
1), in the case µb = 0 and β = 0.05, a modification of
equation (B8), µd = 3 + 3.29

√
µb, has been previously

proposed for this case (Currie 1972).
It is noticeable that, assuming Gaussian distribu-

tions, Bityukov & Krasnikov (1999) suggested the es-
timator Ŝ∗ ≡

√
µd + µb −√

µb, the same one as found
in this paper for Poisson signals, as a measure of the
detection probability in newly planned experiments.
They transformed the original Gaussian distributions
into standard normal distributions, and the intersection
point of the transformed curves was used as a condition
to calculate the measure of the detection probability in
the context of the equal-probability test. However, the
intersection point of the original curves is not at all
the same as the intersection point of the transformed
curves. With the aid of equation (B8), it can be easily
shown that the estimator Ŝd in equation (B4) is equiv-
alent to their Ŝ∗ when α = β. Thus, the estimator
Ŝ∗ found by Bityukov & Krasnikov (1999) is, in fact,
an estimator of the detection limit in an equal-tailed
test, rather than in the equal-probability test as they
insisted.


