• Title/Summary/Keyword: detection technique

Search Result 4,102, Processing Time 0.042 seconds

Depth edge detection by image-based smoothing and morphological operations

  • Abid Hasan, Syed Mohammad;Ko, Kwanghee
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.191-197
    • /
    • 2016
  • Since 3D measurement technologies have been widely used in manufacturing industries edge detection in a depth image plays an important role in computer vision applications. In this paper, we have proposed an edge detection process in a depth image based on the image based smoothing and morphological operations. In this method we have used the principle of Median filtering, which has a renowned feature for edge preservation properties. The edge detection was done based on Canny Edge detection principle and was improvised with morphological operations, which are represented as combinations of erosion and dilation. Later, we compared our results with some existing methods and exhibited that this method produced better results. However, this method works in multiframe applications with effective framerates. Thus this technique will aid to detect edges robustly from depth images and contribute to promote applications in depth images such as object detection, object segmentation, etc.

Development of a Drowsiness Detection System using Retinex Theory and Edge Information (레티넥스 이론과 에지를 이용한 졸음 감지 시스템 개발)

  • Kang, Su Min;Huh, Kyung Moo;Lee, Seung-ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.9
    • /
    • pp.699-704
    • /
    • 2016
  • In this paper, we propose a development method for a drowsiness detection system using retinex theory and edge information for vehicle safety. Detection of a drowsy state of a driver is very important because the drowsiness of driver is often the main cause of many car accidents. After acquiring an image of the entire face, we executed the pre-process step using the retinex theory. We then applied a technique for the detection of the white pixels using edge information. Experimental results showed that the proposed method improved the accuracy of detecting drowsiness to nearly 98%, and can be used to prevent a car accident caused by the driver's drowsiness.

Domain Analysis of Device Drivers Using Code Clone Detection Method

  • Ma, Yu-Seung;Woo, Duk-Kyun
    • ETRI Journal
    • /
    • v.30 no.3
    • /
    • pp.394-402
    • /
    • 2008
  • Domain analysis is the process of analyzing related software systems in a domain to find their common and variable parts. In the case of device drivers, they are highly suitable for domain analysis because device drivers of the same domain are implemented similarly for each device and each system that they support. Considering this characteristic, this paper introduces a new approach to the domain analysis of device drivers. Our method uses a code clone detection technique to extract similarity among device drivers of the same domain. To examine the applicability of our method, we investigated whole device drivers of a Linux source. Results showed that many reusable similar codes can be discerned by the code clone detection method. We also investigated if our method is applicable to other kernel sources. However, the results show that the code clone detection method is not useful for the domain analysis of all kernel sources. That is, the applicability of the code clone detection method to domain analysis is a peculiar feature of device drivers.

  • PDF

A Study on Attack Detection using Hierarchy Architecture in Mobile Ad Hoc Network (MANET에서 계층 구조를 이용한 공격 탐지 기법 연구)

  • Yang, Hwan Seok
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.2
    • /
    • pp.75-82
    • /
    • 2014
  • MANET has various types of attacks. In particular, routing attacks using characteristics of movement of nodes and wireless communication is the most threatening because all nodes which configure network perform a function of router which forwards packets. Therefore, mechanisms that detect routing attacks and defense must be applied. In this paper, we proposed hierarchical structure attack detection techniques in order to improve the detection ability against routing attacks. Black hole detection is performed using PIT for monitoring about control packets within cluster and packet information management on the cluster head. Flooding attack prevention is performed using cooperation-based distributed detection technique by member nodes. For this, member node uses NTT for information management of neighbor nodes and threshold whether attack or not receives from cluster head. The performance of attack detection could be further improved by calculating at regular intervals threshold considering the total traffic within cluster in the cluster head.

Comparison of Region-based CNN Methods for Defects Detection on Metal Surface (금속 표면의 결함 검출을 위한 영역 기반 CNN 기법 비교)

  • Lee, Minki;Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.865-870
    • /
    • 2018
  • A machine vision based industrial inspection includes defects detection and classification. Fast inspection is a fundamental problem for many applications of real-time vision systems. It requires little computation time and localizing defects robustly with high accuracy. Deep learning technique have been known not to be suitable for real-time applications. Recently a couple of fast region-based CNN algorithms for object detection are introduced, such as Faster R-CNN, and YOLOv2. We apply these methods for an industrial inspection problem. Three CNN based detection algorithms, VOV based CNN, Faster R-CNN, and YOLOv2, are experimented for defect detection on metal surface. The results for inspection time and various performance indices are compared and analysed.

Ubiquitous Networking based Intelligent Monitoring and Fault Diagnosis Approach for Photovoltaic Generator Systems (태양광 발전 시스템을 위한 유비쿼터스 네트워킹 기반 지능형 모니터링 및 고장진단 기술)

  • Cho, Hyun-Cheol;Sim, Kwang-Yeal
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1673-1679
    • /
    • 2010
  • A photovoltaic (PV) generator is significantly regarded as one important alternative of renewable energy systems recently. Fault detection and diagnosis of engineering dynamic systems is a fundamental issue to timely prevent unexpected damages in industry fields. This paper presents an intelligent monitoring approach and fault detection technique for PV generator systems by means of artificial neural network and statistical signal detection theory. We devise a multi-Fourier neural network model for representing dynamics of PV systems and apply a general likelihood ratio test (GLRT) approach for investigating our decision making algorithm in fault detection and diagnosis. We make use of a test-bed of ubiquitous sensor network (USN) based PV monitoring systems for testing our proposed fault detection methodology. Lastly, a real-time experiment is accomplished for demonstrating its reliability and practicability.

Adaptive Watermark Detection Algorithm Using Perceptual Model and Statistical Decision Method Based on Multiwavelet Transform

  • Hwang Eui-Chang;Kim Dong Kyue;Moon Kwang-Seok;Kwon Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.6
    • /
    • pp.783-789
    • /
    • 2005
  • This paper is proposed a watermarking technique for copyright protection of multimedia contents. We proposed adaptive watermark detection algorithm using stochastic perceptual model and statistical decision method in DMWT(discrete multi wavelet transform) domain. The stochastic perceptual model calculates NVF(noise visibility function) based on statistical characteristic in the DMWT. Watermark detection algorithm used the likelihood ratio depend on Bayes' decision theory by reliable detection measure and Neyman-Pearson criterion. To reduce visual artifact of image, in this paper, adaptively decide the embedding number of watermark based on DMWT, and then the watermark embedding strength differently at edge and texture region and flat region embedded when watermark embedding minimize distortion of image. In experiment results, the proposed statistical decision method based on multiwavelet domain could decide watermark detection.

  • PDF

Multimedia Watermark Detection Algorithm Based on Bayes Decision Theorys

  • Kwon, Seong-Geun;Lee, Suk-Hwan;Kwon, Kee-Koo;Kwon, Ki-Ryong;Lee, Kuhn-Il
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1272-1275
    • /
    • 2002
  • Watermark detection plays a crucial role in multimedia copyright protection and has traditionally been tackled using correlation-based algorithms. However, correlation-based detection is not actually the best choice, as it does not utilize the distributional characteristics of the image being marked. Accordingly, an efficient watermark detection scheme for DWT coefficients is proposed as optimal for non-additive schemes. Based on the statistical decision theory, the proposed method is derived according to Bayes' decision theory, the Neyman-Pearson criterion, and the distribution of the DWT coefficients, thereby minimizing the missed detection probability subject to a given false alarm probability. The proposed method was tested in the context of robustness, and the results confirmed the superiority of the proposed technique over conventional correlation-based detection method.

  • PDF

Feature Selection Algorithms in Intrusion Detection System: A Survey

  • MAZA, Sofiane;TOUAHRIA, Mohamed
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.5079-5099
    • /
    • 2018
  • Regarding to the huge number of connections and the large flow of data on the Internet, Intrusion Detection System (IDS) has a difficulty to detect attacks. Moreover, irrelevant and redundant features influence on the quality of IDS precisely on the detection rate and processing cost. Feature Selection (FS) is the important technique, which gives the issue for enhancing the performance of detection. There are different works have been proposed, but a map for understanding and constructing a state of the FS in IDS is still need more investigation. In this paper, we introduce a survey of feature selection algorithms for intrusion detection system. We describe the well-known approaches that have been proposed in FS for IDS. Furthermore, we provide a classification with a comparative study between different contribution according to their techniques and results. We identify a new taxonomy for future trends and existing challenges.

Evolutionary Generation Based Color Detection Technique for Object Identification in Degraded Robot Vision (저하된 로봇 비전에서의 물체 인식을 위한 진화적 생성 기반의 컬러 검출 기법)

  • Kim, Kyoungtae;Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1040-1046
    • /
    • 2015
  • This paper introduces GP(Genetic Programming) based color detection model for an object detection of humanoid robot vision. Existing color detection methods have used linear/nonlinear transformation of RGB color-model. However, most of cases have difficulties to classify colors satisfactory because of interference of among color channels and susceptibility for illumination variation. Especially, they are outstanding in degraded images from robot vision. To solve these problems, we propose illumination robust and non-parametric multi-colors detection model using evolution of GP. The proposed method is compared to the existing color-models for various environments in robot vision for real humanoid Nao.