• Title/Summary/Keyword: detection technique

Search Result 4,105, Processing Time 0.039 seconds

Applicability Evaluation of Male-Specific Coliphage-Based Detection Methods for Microbial Contamination Tracking

  • Kim, Gyungcheon;Park, Gwoncheol;Kang, Seohyun;Lee, Sanghee;Park, Jiyoung;Ha, Jina;Park, Kunbawui;Kang, Minseok;Cho, Min;Shin, Hakdong
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.12
    • /
    • pp.1709-1715
    • /
    • 2021
  • Outbreaks of food poisoning due to the consumption of norovirus-contaminated shellfish continue to occur. Male-specific (F+) coliphage has been suggested as an indicator of viral species due to the association with animal and human wastes. Here, we compared two methods, the double agar overlay and the quantitative real-time PCR (RT-PCR)-based method, for evaluating the applicability of F+ coliphage-based detection technique in microbial contamination tracking of shellfish samples. The RT-PCR-based method showed 1.6-39 times higher coliphage PFU values from spiked shellfish samples, in relation to the double agar overlay method. These differences indicated that the RT-PCR-based technique can detect both intact viruses and non-particle-protected viral DNA/RNA, suggesting that the RT-PCR based method could be a more efficient tool for tracking microbial contamination in shellfish. However, the virome information on F+ coliphage-contaminated oyster samples revealed that the high specificity of the RT-PCR- based method has a limitation in microbial contamination tracking due to the genomic diversity of F+ coliphages. Further research on the development of appropriate primer sets for microbial contamination tracking is therefore necessary. This study provides preliminary insight that should be examined in the search for suitable microbial contamination tracking methods to control the sanitation of shellfish and related seawater.

Study of Black Ice Detection Method through Color Image Analysis (컬러 이미지 분석을 통한 블랙 아이스 검출 방법 연구)

  • Park, Pill-Won;Han, Seong-Soo
    • Journal of Platform Technology
    • /
    • v.9 no.4
    • /
    • pp.90-96
    • /
    • 2021
  • Most of the vehicles currently under development and in operation are equipped with various IoT sensors, but some of the factors that cause car accidents are relatively difficult to detect. One of the major risk factors among these factors is black ice. Black ice is one of the factors most likely to cause major accidents, as it can affect all vehicles passing through areas covered with black ice. Therefore, black ice detection technique is essential to prevent major accidents. For this purpose, some studies have been carried out in the past, but unrealistic factors have been reflected in some parts, so research to supplement this is needed. In this paper, we tried to detect black ice by analyzing color images using the CNN technique, and we succeeded in detecting black ice to a certain level. However, there were differences from previous studies, and the reason was analyzed.

Improvement of non-negative matrix factorization-based reverberation suppression for bistatic active sonar (양상태 능동 소나를 위한 비음수 행렬 분해 기반의 잔향 제거 기법의 성능 개선)

  • Lee, Seokjin;Lee, Yongon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.4
    • /
    • pp.468-479
    • /
    • 2022
  • To detect targets with active sonar system in the underwater environments, the targets are localized by receiving the echoes of the transmitted sounds reflected from the targets. In this case, reverberation from the scatterers is also generated, which prevents detection of the target echo. To detect the target effectively, reverberation suppression techniques such as pre-whitening based on autoregressive model and principal component inversion have been studied, and recently a Non-negative Matrix Factorization (NMF)-based technique has been also devised. The NMF-based reverberation suppression technique shows improved performance compared to the conventional methods, but the geometry of the transducer and receiver and attenuation by distance have not been considered. In this paper, the performance is improved through preprocessing such as the directionality of the receiver, Doppler related thereto, and attenuation for distance, in the case of using a continuous wave with a bistatic sonar. In order to evaluate the performance of the proposed system, simulation with a reverberation model was performed. The results show that the detection probability performance improved by 10 % to 40 % at a low false alarm probability of 1 % relative to the conventional non-negative matrix factorization.

The Study of DMZ Wildfire Damage Area Detection Method Using Sentinel-2 Satellite Images (Sentinel-2 위성영상을 이용한 DMZ 산불 피해 면적 관측 기법 연구)

  • Lee, Seulki;Song, Jong-Sung;Lee, Chang-Wook;Ko, Bokyun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.545-557
    • /
    • 2022
  • This study used high-resolution satellite images and supervised classification technique based on machine learning method in order to detect the areas affected by wildfires in the demilitarized zone (DMZ) where direct access is difficult. Sentinel-2 A/B was used for high-resolution satellite images. Land cover map was calculated based on the SVM supervised classification technique. In order to find the optimal combination to classify the DMZ wildfire damage area, supervised classification according to various kernel and band combinations in the SVM was performed and the accuracy was evaluated through the error matrix. Verification was performed by comparing the results of the wildfire detection based on satellite image and data by the wildfire statistical annual report in 2020 and 2021. Also, wildfire damage areas was detected for which there is no current data in 2022. This is to quickly determine reliable results.

Machine Parts(O-Ring) Defect Detection Using Adaptive Binarization and Convex Hull Method Based on Deep Learning (적응형 이진화와 컨벡스 헐 기법을 적용한 심층학습 기반 기계부품(오링) 불량 판별)

  • Kim, Hyun-Tae;Seong, Eun-San
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1853-1858
    • /
    • 2021
  • O-rings fill the gaps between mechanical parts. Until now, the sorting of defective products has been performed visually and manually, so classification errors often occur. Therefore, a camera-based defect classification system without human intervention is required. However, a binarization process is required to separate the required region from the background in the camera input image. In this paper, an adaptive binarization technique that considers the surrounding pixel values is applied to solve the problem that single-threshold binarization is difficult to apply due to factors such as changes in ambient lighting or reflections. In addition, the convex hull technique is also applied to compensate for the missing pixel part. And the learning model to be applied to the separated region applies the residual error-based deep learning neural network model, which is advantageous when the defective characteristic is non-linear. It is suggested that the proposed system through experiments can be applied to the automation of O-ring defect detection.

A Dynamic Correction Technique of Time-Series Data using Anomaly Detection Model based on LSTM-GAN (LSTM-GAN 기반 이상탐지 모델을 활용한 시계열 데이터의 동적 보정기법)

  • Hanseok Jeong;Han-Joon Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.2
    • /
    • pp.103-111
    • /
    • 2023
  • This paper proposes a new data correction technique that transforms anomalies in time series data into normal values. With the recent development of IT technology, a vast amount of time-series data is being collected through sensors. However, due to sensor failures and abnormal environments, most of time-series data contain a lot of anomalies. If we build a predictive model using original data containing anomalies as it is, we cannot expect highly reliable predictive performance. Therefore, we utilizes the LSTM-GAN model to detect anomalies in the original time series data, and combines DTW (Dynamic Time Warping) and GAN techniques to replace the anomaly data with normal data in partitioned window units. The basic idea is to construct a GAN model serially by applying the statistical information of the window with normal distribution data adjacent to the window containing the detected anomalies to the DTW so as to generate normal time-series data. Through experiments using open NAB data, we empirically prove that our proposed method outperforms the conventional two correction methods.

Deep Learning-based Pixel-level Concrete Wall Crack Detection Method (딥러닝 기반 픽셀 단위 콘크리트 벽체 균열 검출 방법)

  • Kang, Kyung-Su;Ryu, Han-Guk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.2
    • /
    • pp.197-207
    • /
    • 2023
  • Concrete is a widely used material due to its excellent compressive strength and durability. However, depending on the surrounding environment and the characteristics of the materials used in the construction, various defects may occur, such as cracks on the surface and subsidence of the structure. The detects on the surface of the concrete structure occur after completion or over time. Neglecting these cracks may lead to severe structural damage, necessitating regular safety inspections. Traditional visual inspections of concrete walls are labor-intensive and expensive. This research presents a deep learning-based semantic segmentation model designed to detect cracks in concrete walls. The model addresses surface defects that arise from aging, and an image augmentation technique is employed to enhance feature extraction and generalization performance. A dataset for semantic segmentation was created by combining publicly available and self-generated datasets, and notable semantic segmentation models were evaluated and tested. The model, specifically trained for concrete wall fracture detection, achieved an extraction performance of 81.4%. Moreover, a 3% performance improvement was observed when applying the developed augmentation technique.

Development of the Automated Ultrasonic Flaw Detection System for HWR Nuclear Fuel Cladding Tubes (중수로형 핵연료 피복관의 자동초음파탐상장치 개발)

  • Choi, M.S.;Yang, M.S.;Suh, K.S.
    • Nuclear Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.170-178
    • /
    • 1988
  • An automated ultrasonic flaw detection system was developed for thin-walled and short tubes such as Zircaloy-4 tubes used for cladding heavy-water reactor fuel. The system was based on the two channels immersion pulse-echo technique using 14 MHz shear wave and the specially developed helical scanning technique, in which the tube to be tested is only rotated and the small water tank with spherical focus ultrasonic transducers is translated along the tube length. The optimum angle of incidence of ultrasonic beam was 26 degrees, at which the inside and outside surface defects with the same size and direction could be detected with the same sensitivity. The maximum permissible defects in the Zircaloy-4 tubes, i.e., the longitudinal and circumferential v notches with the length of 0.76mm and 0.38mm, respectively and the depth of 0.04 mm on the inside and outside surface, could be easily detected by the system with the inspection speed of about 1 m/min and the very excellent reproducibility. The ratio of signal to noise was greater than 20 dB for the longitudinal defects and 12 dB for the circumferential defects.

  • PDF

Utilizing Mean Teacher Semi-Supervised Learning for Robust Pothole Image Classification

  • Inki Kim;Beomjun Kim;Jeonghwan Gwak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.5
    • /
    • pp.17-28
    • /
    • 2023
  • Potholes that occur on paved roads can have fatal consequences for vehicles traveling at high speeds and may even lead to fatalities. While manual detection of potholes using human labor is commonly used to prevent pothole-related accidents, it is economically and temporally inefficient due to the exposure of workers on the road and the difficulty in predicting potholes in certain categories. Therefore, completely preventing potholes is nearly impossible, and even preventing their formation is limited due to the influence of ground conditions closely related to road environments. Additionally, labeling work guided by experts is required for dataset construction. Thus, in this paper, we utilized the Mean Teacher technique, one of the semi-supervised learning-based knowledge distillation methods, to achieve robust performance in pothole image classification even with limited labeled data. We demonstrated this using performance metrics and GradCAM, showing that when using semi-supervised learning, 15 pre-trained CNN models achieved an average accuracy of 90.41%, with a minimum of 2% and a maximum of 9% performance difference compared to supervised learning.

Measuring and unfolding fast neutron spectra using solution-grown trans-stilbene scintillation detector

  • Nguyen Duy Quang;HongJoo Kim;Phan Quoc Vuong;Nguyen Duc Ton;Uk-Won Nam;Won-Kee Park;JongDae Sohn;Young-Jun Choi;SungHwan Kim;SukWon Youn;Sung-Joon Ye
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1021-1030
    • /
    • 2023
  • We propose an overall procedure for measuring and unfolding fast neutron spectra using a trans-stilbene scintillation detector. Detector characterization was described, including the information on energy calibration, detector resolution, and nonproportionality response. The digital charge comparison method was used for the investigation of neutron-gamma Pulse Shape Discrimination (PSD). A pair of values of 600 ns pulse width and 24 ns delay time was found as the optimized conditions for PSD. A fitting technique was introduced to increase the trans-stilbene Proton Response Function (PRF) by 28% based on comparison of the simulated and experimental electron-equivalent distributions by the Cf-252 source. The detector response matrix was constructed by Monte-Carlo simulation and the spectrum unfolding was implemented using the iterative Bayesian method. The unfolding of simulated and measured spectra of Cf-252 and AmBe neutron sources indicates reliable, stable and no-bias results. The unfolding technique was also validated by the measured cosmic-ray induced neutron flux. Our approach is promising for fast neutron detection and spectroscopy.