• Title/Summary/Keyword: detection technique

Search Result 4,102, Processing Time 0.049 seconds

Intelligent Video Event Detection System Used by Image Object Identification Technique (영상 객체인식기법을 활용한 지능형 영상검지 시스템)

  • Jung, Sang-Jin;Kim, Jeong-Jung;Lee, Dong-Yeong;Jo, Sung-Jea;Kim, Guk-Boh
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.2
    • /
    • pp.171-178
    • /
    • 2010
  • The surveillance system in general, has been sufficiently studied in the field of wireless semiconductor using basic sensors and its study of image surveillance system mainly using camera as a sensor has especially been fully implemented. In this paper, we propose 'Intelligent Image Detection System' used by image object identification technique based on the result analysis of various researches. This 'Intelligent Image Detection System' can easily trace and judge before and after a particular incident and ensure affirmative evidence and numerous relative information. Therefore, the 'Intelligent Image Detection System' proposed in this paper can be effectively used in the lived society such as traffic management, disaster alarm system and etc.

DEVELOPING THE CLOUD DETECTION ALGORITHM FOR COMS METEOROLOGICAL DATA PROCESSING SYSTEM

  • Chung, Chu-Yong;Lee, Hee-Kyo;Ahn, Hyun-Jung;Ahn, Hyoung-Hwan;Oh, Sung-Nam
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.200-203
    • /
    • 2006
  • Cloud detection algorithm is being developed as major one of the 16 baseline products of CMDPS (COMS Meteorological Data Processing System), which is under development for the real-time application of data will be observed from COMS Meteorological Imager. For cloud detection from satellite data, we studied two different algorithms. One is threshold technique based algorithm, which is traditionally used, and another is artificial neural network model. MPEF scene analysis algorithm is the basic idea of threshold cloud detection algorithm, and some modifications are conducted for COMS. For the neural network, we selected MLP with back-propagation algorithm. Prototype software of each algorithm was completed and evaluated by using the MTSAT-1R and GOES-9 data. Currently the software codes are standardized using Fortran90 language. For the preparation as an operational algorithm, we will setup the validation strategy and tune up the algorithm continuously. This paper shows the outline of the two cloud detection algorithm and preliminary test result of both algorithms.

  • PDF

DETECTION OF FRUITS ON NATURAL BACKGROUND

  • Limsiroratana, Somchai;Ikeda, Yoshio;Morio, Yoshinari
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.279-286
    • /
    • 2000
  • The objective of this research is to detect the papaya fruits on tree in an orchard. The detection of papaya on natural background is difficult because colors of fruits and background such as leaves are similarly green. We cannot separate it from leaves by color information. Therefore, this research will use shape information instead. First, we detect an interested object by detecting its boundary using edge detection technique. However, the edge detection will detect every objects boundary in the image. Therefore, shape description technique will be used to describe which one is the interested object boundary. The good shape description should be invariant in scaling, rotating, and translating. The successful concept is to use Fourier series, which is called "Fourier Descriptors". Elliptic Fourier Descriptors can completely represent any shape, which is selected to describe the shape of papaya. From the edge detection image, it takes a long time to match every boundary directly. The pre-processing task will reduce non-papaya edge to speed up matching time. The deformable template is used to optimize the matching. Then, clustering the similar shapes by the distance between each centroid, papaya can be completely detected from the background.

  • PDF

Signal Space Detection for High Data Rate Channels (고속 데이터 전송 채널을 위한 신호공간 검출)

  • Jeon , Taehyun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.10 s.340
    • /
    • pp.25-30
    • /
    • 2005
  • This paper generalizes the concept of the signal space detection to construct a fixed delay tree search (FDTS) detector which estimates a block of n channel symbols at a time. This technique is applicable to high speed implementation. Two approaches are discussed both of which are based on efficient signal space partitioning. In the first approach, symbol detection is performed based on a multi-class partitioning of the signal space. This approach is a generalization of binary symbol detection based on a two-class pattern classification. In the second approach, binary signal detection is combined with a look-ahead technique, resulting in a highly parallel detector architecture.

Developing the Cloud Detection Algorithm for COMS Meteorolgical Data Processing System

  • Chung, Chu-Yong;Lee, Hee-Kyo;Ahn, Hyun-Jung;Ahn, Myoung-Hwan;Oh, Sung-Nam
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.367-372
    • /
    • 2006
  • Cloud detection algorithm is being developed as primary one of the 16 baseline products of CMDPS (COMS Meteorological Data Processing System), which is under development for the real-time application of data will be observed from COMS Meteorological Imager. For cloud detection from satellite data, we studied two different algorithms. One is threshold technique based algorithm, which is traditionally used, and another is artificial neural network model. MPEF scene analysis algorithm is the basic idea of threshold cloud detection algorithm, and some modifications are conducted for COMS. For the neural network, we selected MLP with back-propagation algorithm. Prototype software of each algorithm was completed and evaluated by using the MTSAT-IR and GOES-9 data. Currently the software codes are standardized using Fortran90 language. For the preparation as an operational algorithm, we will setup the validation strategy and tune up the algorithm continuously. This paper shows the outline of the two cloud detection algorithms and preliminary test results of both algorithms.

Adversarial Detection with Gaussian Process Regression-based Detector

  • Lee, Sangheon;Kim, Noo-ri;Cho, Youngwha;Choi, Jae-Young;Kim, Suntae;Kim, Jeong-Ah;Lee, Jee-Hyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.4285-4299
    • /
    • 2019
  • Adversarial attack is a technique that causes a malfunction of classification models by adding noise that cannot be distinguished by humans, which poses a threat to a deep learning model. In this paper, we propose an efficient method to detect adversarial images using Gaussian process regression. Existing deep learning-based adversarial detection methods require numerous adversarial images for their training. The proposed method overcomes this problem by performing classification based on the statistical features of adversarial images and clean images that are extracted by Gaussian process regression with a small number of images. This technique can determine whether the input image is an adversarial image by applying Gaussian process regression based on the intermediate output value of the classification model. Experimental results show that the proposed method achieves higher detection performance than the other deep learning-based adversarial detection methods for powerful attacks. In particular, the Gaussian process regression-based detector shows better detection performance than the baseline models for most attacks in the case with fewer adversarial examples.

Signal Energy-based Cyclostationary Spectrum Sensing for Wireless Sensor Networks (무선센서네트워크를 위한 신호 에너지 기반 사이클로스테이셔너리 스펙트럼 검출)

  • Nguyen, Quoc Kien;Jeon, Taehyun
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.119-122
    • /
    • 2016
  • Feature detection is recognized as an accurate spectrum sensing approach when the information of the desired signal is partly known at the receiver. This type of detection was proposed to overcome large noise environment. Cyclostationary detection is an example of feature detection in spectrum sensing technique in cognitive radio. However, the cyclostationary process calculation requires a lot of processing time and information about the designed signals. On the other hand, energy detection spectrum sensing is widely known as a simple and compact spectrum sensing technique. However, energy detection is highly affected by large noise and lead to high detection error probability. In this paper, the combination of energy detection and cyclostationary is proposed in order to increase the accuracy and decrease the calculation and processing time. The two-layer threshold is utilized in order to reduce the complexity of computation and processing time in cyclostationary which can lead to the improved throughput of the system. The simulation result shows that the implementation of energy-based cyclostationary detector can help to improve the performance of the system while it can considerably reduce the required time for signal detection.

Noncoherent adaptive code acquisition scheme using a differential detection technique in DS/SS systems (DS/SS 시스템에서의 차등 검파 기법을 이용한 비동기식 적응형 코드 위상 검출 방법)

  • 류탁기;권종형;전형구;홍대식;강창언
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.77-80
    • /
    • 2000
  • Adaptive filter based code acquisition scheme offers a fast acquisition with a low error probability. However, it has been studied only under a coherent environment. In this paper, the noncoherent adaptive code acquisition scheme employing a differential detection technique is proposed. For the proposed scheme, system probabilities and the mean acquisition time are analyzed numerically. Simulation results show that the proposed system outperforms over the conventional matched filter by 2-4 ㏈ under AWGN channel for 16 taps.

  • PDF

Detection of Hog Cholera Virus from the Artificially Infected Pigs by Fluorescent Antibody Technique and END Method (형광항체법 및 END법에 의한 돼지 콜레라 감염돈에서의 바이러스 검출)

  • Kim, S.J.;Kang, B.J.
    • Korean Journal of Veterinary Research
    • /
    • v.10 no.2
    • /
    • pp.53-57
    • /
    • 1970
  • Hog cholera (HC) virus detection from the artificially infected pigs was made using fluoreescent antibody technique (FAT) and END method. It was observed that the swine origin virulent was detected in most of the organs tested at the early stage of the infection, while the tissue culture attenuated virus was detected only in blood (transitionally), lung, and tonsil.

  • PDF

Study on Plastics Detection Technique using Terra/ASTER Data

  • Syoji, Mizuhiko;Ohkawa, Kazumichi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1460-1463
    • /
    • 2003
  • In this study, plastic detection technique was developed, applying remote sensing technology as a method to extract plastic wastes, which is one of the big causes of concern contributing to environmental destruction. It is possible to extract areas where plastic (including polypropylene and polyethylene) wastes are prominent, using ASTER data by taking advantage of its absorptive characteristics of ASTER/SWIR bands. The algorithm is applicable to define large industrial wastes disposal sites and areas where plastic greenhouses are concentrated. However, the detection technique with ASTER/SWIR data has some research tasks to be tackled, which includes a partial secretion of reference spectral, depending on some conditions of plastic wastes and a detection error in a region mixed with vegetations and waters. Following results were obtained after making comparisons between several detection methods and plastic wastes in different conditions; (a)'spectral extraction method' was suitable for areas where plastic wastes exist separated from other objects, such as coastal areas where plastic wastes drifted ashore. (single plastic spectral was used as a reference for the 'spectral extraction method') (b)On the other hand, the 'spectral extraction method' was not suitable for sites where plastic wastes are mixed with vegetation and soil. After making comparison of the processing results of a mixed area, it was found that applying both 'separation method' using un-mixing and ‘spectral extraction method’ with NDVI masked is the most appropriate method to extract plastic wastes. Also, we have investigated the possibility of reducing the influence of vegetation and water, using ASTER/TIR, and successfully extracted some places with plastics. As a conclusion, we have summarized the relationship between detection techniques and conditions of plastic wastes and propose the practical application of remote sensing technology to the extraction of plastic wastes.

  • PDF