• Title/Summary/Keyword: detection sensor

Search Result 3,682, Processing Time 0.029 seconds

A Study on the Implementation of A Fire Detection Monitoring System to Improve Data-Rate in WSN Environment (WSN 환경에서 전송률 향상을 고려한 화재감지 모니터링 시스템 구축에 관한 연구)

  • Lee, Jae-Soo;Yun, Chan-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.2
    • /
    • pp.96-102
    • /
    • 2011
  • There are many problems with the fire detection devices being used in currently, because it is difficult to find location of the source of fire and determine where devices are working or not. In this paper, we proposed fire detection and rescue system using wireless sensor network that can be real-time monitoring and determine safe exit. Fire detection and rescue system based on ubiquitous sensor network can know exactly source of fire and help determine rescue tactics using sensing data from wireless sensor nodes. Transmitted wirelessly in real-time thermal sensor and gas sensor information to analyze the GUI to monitor the status information output to the screen by use of a system implemented in everyday life, looked at the possibility.

Fault Tolerant Control of Sensor Fault of EPB System (EPB 시스템의 센서 고장 허용 제어 기법)

  • Lee, Won-Goo;Lee, Young-Ok;Jang, Min-Seok;Lee, Choong-Woo;Chung, Chung-Choo;Chung, Han-Byul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.8-17
    • /
    • 2010
  • In this paper, a fault tolerant control against sensor faults of electric parking brake (EPB) is proposed. Fault tolerant control method of EPB system is strongly demanded since sensor faults can endanger a driver's safety. In this paper, a clamp force estimation method is presented using motor's armature current and angular velocity. Clamp force estimation method is applied for fault detection method with parity equations. The goal of the detection method is to detect and identify faults in encoder, current sensor, force sensor, and parking cable. And a switching logic for fault tolerant control against the three sensor faults is suggested. Experimental results show that the proposed force estimation method satisfies the specifications of EPB system. The effectiveness of the fault detection method is validated with experimental results. Although a single sensor fault happens, EPB system with the proposed fault detection method does not develop into a failure on subsystem or system level.

Detection Range Improvement of Radiation Sensor for Radiation Contamination Distribution Imaging (방사선 오염분포 영상화를 위한 방사선 센서의 탐지 범위 개선에 관한 연구)

  • Song, Keun-Young;Hwang, Young-Gwan;Lee, Nam-Ho;Na, Jun-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1535-1541
    • /
    • 2019
  • To carry out safe and rapid decontamination in radiological accident areas, acquisition of various information on radiation sources is needed. In particular, to figure out the location and distribution of radiation sources is essential for rapid follow-up and removal of contaminants as well as minimizing worker damage. The radiation distribution detection device is used to obtain the position and distribution information of the radiation source. In the case of a radiation distribution detection device, a detection sensor unit is generally composed of a single sensor, and the detection range is limited due to the physical characteristics of the single sensor. We applied a calibration detector for controlling the detection sensitivity of a single sensor for radiation detection and improved the limited detection range of radiation dose rate. Also, gamma irradiation test confirmed the improvement of radiation distribution detection range.

A Study on the Effective Scanning Trajectory using Manipulator for Underground Object Detection (매니퓰레이터를 이용한 지하 매설물 탐지의 효율적 탐지경로에 관한 연구)

  • Lee, Myung-Chun;Shin, Ho-Cheol;Yoon, Jong-Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.9-15
    • /
    • 2012
  • This paper shows an effective scanning trajectory for a mine detection device that is one of the mission equipments of unmanned ground vehicle. The mine detection device is composed of a mine-detection sensor, and a 4 DOF manipulator enabling sensor position control. There are three modes that manage the mine detection device: passive, semi-automatic, and automatic. The automatic mode is used the most. This paper suggests a scanning method that makes shape of 8. This method prevents missing target area and enhances scanning speed when the mine detection device scans the ground surface in automatic mode. The suggested method is verified by simulations and experiments.

Comparison of detection rates Area sensors and 3D spatial division multiple sensors for detecting obstacles in the screen door (스크린도어의 장애물 검지를 위한 Area센서와 다중공간분할 3D센서의 검지율 비교 분석)

  • Yoo, Bong-Seok;Lee, Hyun-Su;Jin, Ju-Hyun;Kim, Jong-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.6
    • /
    • pp.561-566
    • /
    • 2016
  • A subway platform is equipped with screen doors in oder to avoid accidents of passengers, where Area sensors are installed for detecting obstacles in the screen doors. However, there exist frequent operating errors in screen doors due to dusts, sunlight, snow, and bugs. It is required to develope a detection device which reduces errors and elaborates detection function. In this paper, we compared the detection rates of the Area sensor the 3D sensor using CCTV-based image data with installing sensors at the screen door in Munyang station Daegu, where 3D sensor is applied with the space division multiple detection algorithms. It is measured that the detection rate of 3D sensor and Area sensor is approximately 89.61% and 78.88%, respectively. The results confirmed that 3D senor has higher detection rate compared with Area sensor with the rate of 6.87~9.79%, and 3D sensor has benefit in the aspect of installation fee.

Optimal sensor placement for bridge damage detection using deflection influence line

  • Liu, Chengyin;Teng, Jun;Peng, Zhen
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.169-181
    • /
    • 2020
  • Sensor placement is a crucial aspect of bridge health monitoring (BHM) dedicated to accurately estimate and locate structural damages. In addressing this goal, a sensor placement framework based on the deflection influence line (DIL) analysis is here proposed, for the optimal design of damage detection-oriented BHM system. In order to improve damage detection accuracy, we explore the change of global stiffness matrix, damage coefficient matrix and DIL vector caused by structural damage, and thus develop a novel sensor placement framework based on the Fisher information matrix. Our approach seeks to determine the contribution of each sensing node to damage detection, and adopts a distance correction coefficient to eliminate the information redundancy among sensors. The proposed damage detection-oriented optimal sensor placement (OSP) method is verified by two examples: (1) a numerically simulated three-span continuous beam, and (2) the Pinghu bridge which has existing real damage conditions. These two examples verify the performance of the distance corrected damage sensitivity of influence line (DSIL) method in significantly higher contribution to damage detection and lower information redundancy, and demonstrate the proposed OSP framework can be potentially employed in BHM practices.

Speed and Current Sensor Fault Detection and Isolation Based on Adaptive Observers for IM Drives

  • Yu, Yong;Wang, Ziyuan;Xu, Dianguo;Zhou, Tao;Xu, Rong
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.967-979
    • /
    • 2014
  • This paper focuses on speed and current sensor fault detection and isolation (FDI) for induction motor (IM) drives. A new, accurate and high-efficiency FDI approach is proposed so that a system can continue operating with good performance even in the presence of speed sensor faults, current sensor faults or both. The proposed three paralleled adaptive observers are capable of current sensor fault detection and localization. By using observers, the rotor flux and rotor speed can be estimated which allows the system to run under the speed sensorless vector control mode when a speed sensor fault occurs. In order to detect speed sensor faults, a threshold-based scheme is proposed. To verify the feasibility and effectiveness of the proposed FDI strategy, experiments are carried out under different conditions based on a dSPACE DS1104 induction motor drive platform.

Planar Hall Sensor Used for Microbead Detection and Biochip Application

  • Thanh, N.T.;Kim, D.Y.;Kim, C.G.
    • Journal of Magnetics
    • /
    • v.12 no.1
    • /
    • pp.40-44
    • /
    • 2007
  • The Planar Hall effect in a spin valve structure has been applied as a biosensor being capable of detecting $Dynabeads^{(R)}$ M-280. The sensor performance was tested under the application of a DC magnetic field where the output signals were obtained from a nanovoltmeter. The sensor with the pattern size of $50{\times}100{\mu}m^2$ has produced high sensitivity; especially, the real-time profiles by using that sensor revealed significant performance at external applied magnetic field of around 7.0 Oe with the resolution of 0.04 beads per $\mu m^2$. Finally, a successful array including 24 patterns with the single sensor size of $3{\times}3{\mu}m^2$ has shown the uniform and stable signals for single magnetic bead detection. The comparison of this sensor signal with the others has proved feasibility for biosensor application. This, connecting with the advantages of more stable and high signal to noise of PHR sensor's behaviors, can be used to detect the biomolecules and provide a vehicle for detection and study of other molecular interaction.

Motion Sensor Fault Detection and Failsafe Logic for Vehic1e Stability Control Systems (VSCs)

  • Yi, Kyongsu;Min, Kyongchan
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.1961-1968
    • /
    • 2004
  • The design of a reliable and failsafe control system requires that sensor failures be detected and identified within acceptable time limit so that system malfunction can be prevented. This paper presents a model-based approach to sensor fault detection with applications to vehicle stability control systems. The effectiveness of the proposed method is illustrated through test data-based evaluation. Vehicle test data-based evaluation results show that the proposed fault management scheme can be used for the design of a failsafe VSCs.

A Study on Real-time Monitoing of Tool Fracture in Turning (선삭공정시 공구파손의 실시간 검출에 관한 연구)

  • Park, D.K.;Chu, C.N.;Lee, J.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.3
    • /
    • pp.130-143
    • /
    • 1995
  • This paper presents a new methodology for on-line tool breadage detection by sensor fusion of an acoustic emission (AE) sensor and a built-in force sensor. A built-in piezoelectric force sensor, instead of a tool dynamometer, was used to measure the cutting force without altering the machine tool dynamics. The sensor was inserted in the tool turret housing of an NC lathe. FEM analysis was carried out to locate the most sensitive position for the sensor. A burst of AE signal was used as a triggering signal to inspect the cutting force. A sighificant drop of cutting force was utilized to detect tool breakage. The algorithm was implemented on a DSP board for in-process tool breakage detection. Experiental works showed an excellent monitoring capability of the proposed tool breakage detection system.

  • PDF