• 제목/요약/키워드: detection of crack

검색결과 496건 처리시간 0.025초

Pavement Crack Detection and Segmentation Based on Deep Neural Network

  • Nguyen, Huy Toan;Yu, Gwang Hyun;Na, Seung You;Kim, Jin Young;Seo, Kyung Sik
    • 한국정보기술학회논문지
    • /
    • 제17권9호
    • /
    • pp.99-112
    • /
    • 2019
  • 도로 포장면의 크랙(crack)은 도로포장 구조의 열화를 입증하는 중요한 신호와 증상이다. 카메라 영상기반 도로포장 크랙 탐지는 강도 비균질성, 위상 복잡성, 낮은 대조도 및 노이즈성의 텍스처 배경 때문에 어려운 문제이다. 본 논문은 흑백영상에 대하여 깊은 신경망(DNN)에 기반하여 픽셀수준의 도로 크랙 탐지 및 분할 문제에 대해 다룬다. 변형된 U-net 네트워크와 고수준 특징 네트워크를 포함하는 새로운 DNN 구조를 제안한다. 본 연구의 중요 기여는 융합 층을 통해 공급되는 이들 네트워크의 결합 방법이다. 우리가 아는 한, 본 연구는 보도블럭 크랙 분할 및 탐지 문제를 결합을 소개한 최초의 논문이다. 크랙 탐지 및 분할의 시스템 성능은 새로운 구조를 사용하여 급격히 향상되었다. 제안된 시스템을 2개의 공개 데이터셋­크랙 포레스트 데이터셋(CFD)와 AigleRN 데이터셋­에 대하여 구현하고 평가하였다. 본 논문의 시스템은 여덟 가지의 최신 알고리즘과 같은 데이터셋으로 실험을 하였을 때, 가장 뛰어난 결과를 보여주었다.

Crack identification in post-buckled beam-type structures

  • Moradi, Shapour;Moghadam, Peyman Jamshidi
    • Smart Structures and Systems
    • /
    • 제15권5호
    • /
    • pp.1233-1252
    • /
    • 2015
  • This study investigates the problem of crack detection in post-buckled beam-type structures. The beam under the axial compressive force has a crack, assumed to be open and through the width. The crack, which is modeled by a massless rotational spring, divides the beam into two segments. The crack detection is considered as an optimization problem, and the weighted sum of the squared errors between the measured and computed natural frequencies is minimized by the bees algorithm. To find the natural frequencies, the governing nonlinear equations of motion for the post-buckled state are first derived. The solution of the nonlinear differential equations of the two segments consists of static and dynamic parts. The differential quadrature method along with an arc length strategy is used to solve the static part, while the same method is utilized for the solution of the linearized dynamic part and the extraction of the natural frequencies of the cracked beam. The investigation includes several numerical as well as experimental case studies on the post-buckled simply supported and clamped-clamped beams having open cracks. The results show that several parameters such as the amount of applied compressive force and boundary conditions influences the outcome of the crack detection scheme. The identification results also show that the crack position and depth can be predicted well by the presented method.

Crack Detection Method for Tunnel Lining Surfaces using Ternary Classifier

  • Han, Jeong Hoon;Kim, In Soo;Lee, Cheol Hee;Moon, Young Shik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권9호
    • /
    • pp.3797-3822
    • /
    • 2020
  • The inspection of cracks on the surface of tunnel linings is a common method of evaluate the condition of the tunnel. In particular, determining the thickness and shape of a crack is important because it indicates the external forces applied to the tunnel and the current condition of the concrete structure. Recently, several automatic crack detection methods have been proposed to identify cracks using captured tunnel lining images. These methods apply an image-segmentation mechanism with well-annotated datasets. However, generating the ground truths requires many resources, and the small proportion of cracks in the images cause a class-imbalance problem. A weakly annotated dataset is generated to reduce resource consumption and avoid the class-imbalance problem. However, the use of the dataset results in a large number of false positives and requires post-processing for accurate crack detection. To overcome these issues, we propose a crack detection method using a ternary classifier. The proposed method significantly reduces the false positive rate, and the performance (as measured by the F1 score) is improved by 0.33 compared to previous methods. These results demonstrate the effectiveness of the proposed method.

회전 블레이드의 크랙 발생 예측을 위한 은닉 마르코프모델을 이용한 해석 (Crack Detection of Rotating Blade using Hidden Markov Model)

  • 이승규;유홍희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.99-105
    • /
    • 2009
  • Crack detection method of a rotating blade was suggested in this paper. A rotating blade was modeled with a cantilever beam connected to a hub undergoing rotating motion. The existence and the location of crack were able to be recognized from the vertical response of end tip of a rotating cantilever beam by employing Discrete Hidden Markov Model (DHMM) and Empirical Mode Decomposition (EMD). DHMM is a famous stochastic method in the field of speech recognition. However, in recent researches, it has been proved that DHMM can also be used in machine health monitoring. EMD is the method suggested by Huang et al. that decompose a random signal into several mono component signals. EMD was used in this paper as the process of extraction of feature vectors which is the important process to developing DHMM. It was found that developed DHMMs for crack detection of a rotating blade have shown good crack detection ability.

  • PDF

Ultrasonic guided waves-based fatigue crack detection in a steel I-beam: an experimental study

  • Jiaqi Tu;Xian Xu;Chung Bang Yun;Yuanfeng Duan
    • Smart Structures and Systems
    • /
    • 제31권1호
    • /
    • pp.13-27
    • /
    • 2023
  • Fatigue crack is a fatal problem for steel structures. Early detection and maintenance can help extend the service life and prevent hazards. This paper presents the ultrasonic guided waves-based (UGWs-based) fatigue crack detection of a steel I-beam. The semi-analytical finite element model has been built to obtain the wave propagation characteristics. Damage indices in both time and frequency domains were analyzed by considering the characteristic variations of UGWs including the amplitude, phase angle, and wave packet energy. The pulse-echo and pitch-catch methods were combined in the detection scheme. Lab-scale experiments were conducted on welded steel I-beams to verify the proposed method. Results show that the damage indices based on the characteristic variations in the time domain can identify and localize the fatigue crack before it enters the rapid growth stage. The damage severity can be reasonably evaluated by analyzing the time-domain damage indices. Two nonlinear damage indices in the frequency domain give earlier warnings of the fatigue crack than the time-domain damage indices do. The identification results based on the above two nonlinear indices are found to be less consistent under various excitation frequencies. More robust nonlinear techniques needed to be searched and tested for early crack detection in steel I-beams in further study.

A method for concrete crack detection using U-Net based image inpainting technique

  • Kim, Su-Min;Sohn, Jung-Mo;Kim, Do-Soo
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권10호
    • /
    • pp.35-42
    • /
    • 2020
  • 본 연구에서는 비지도 이상 탐지 방법을 변형한 U-Net 기반의 이미지 복원 기법을 통해 한정적인 데이터를 활용한 균열 탐지 방안을 제안한다. 콘크리트 균열은 다양한 원인으로 인해 발생하며, 장기적으로 구조물의 심각한 손상을 초래할 수 있는 요소이다. 일반적으로 균열 조사는 검사원의 육안으로 판단하는 외관 검사법을 사용하는데, 이는 판단에 객관성이 떨어지며 인적 오류 발생 가능성이 크다. 따라서 객관적이고 정확한 이미지 분석 처리를 통한 방법이 요구된다. 최근에는 균열을 신속하고 정밀하게 탐지할 수 있도록 딥러닝을 활용한 기술들이 연구되고 있다. 하지만 일반적인 균열자료에 비해 점검 대상물에 대한 데이터는 한정적이므로 이를 활용한 기존 균열 탐지 모델의 성능은 제한적인 경우가 많다. 따라서 본 연구에서는 비지도 이상 탐지 방법을 사용해 점검 대상물에 대한 데이터를 증강하여 해당 데이터를 사용하여 학습한 결과, 정확도 98.78%, 조화평균(F1_Score) 82.67%의 성능을 확인하였다.

자동화 균열 탐지 시스템을 위한 딥러닝 모델에 관한 연구 (Deep Learning Models for Autonomous Crack Detection System)

  • 지홍근;김지나;황시정;김도건;박은일;김영석;류승기
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권5호
    • /
    • pp.161-168
    • /
    • 2021
  • 균열은 건물, 교량, 도로, 수송관 등의 기반시설의 안전성에 영향을 주는 요소이다. 본 연구에서는 검사 비용과 시간을 줄일 수 있는 자동화된 균열 탐지 시스템을 다룬다. 환경과 표면에 강건한 시스템을 구성하기 위해서, 본 연구에서는 여러 사전 연구에서 사용된 다양한 표면의 균열 데이터 셋을 수집하여 통합 데이터 셋을 구축하였다. 이후, 컴퓨터 비전 분야에 높은 성능을 발휘하는 VGG, ResNet, WideResNet, ResNeXt, DenseNet, EfficientNet 딥러닝 모델을 적용하였다. 통합 데이터 셋은 훈련 집합(80%)과 테스트 집합(20%)으로 나누어 모델 성능을 검증하기 위해서 사용했다. 실험 결과, DenseNet121 모델이 높은 마라미터 효율성을 가지면서도 테스트 집합에 대해 96.20%의 정확도를 달성하여 가장 높은 성능을 보여주었다. 딥러닝 모델의 균열 검출 성능 검증을 통해, DenseNet121를 활용하여 컴퓨팅 자원이 적은 소형 디바이스에서도 높은 균열 검출 성능을 보이는 탐지 시스템을 구축이 가능함을 확인했다.

시설물의 유지관리를 위한 기계학습 기반 콘크리트 균열 감지 프레임워크 (Machine Learning-based Concrete Crack Detection Framework for Facility Maintenance)

  • 지봉준
    • 한국지반환경공학회 논문집
    • /
    • 제22권10호
    • /
    • pp.5-12
    • /
    • 2021
  • 시설물의 노후화는 피할 수 없는 현상이다. 노후화된 시설물의 관리를 위해 균열을 감지하고 이를 추적하면서 시설물의 상태를 간접적으로 추론할 수 있다. 따라서 균열 감지는 노후화된 시설물의 관리를 위해 필수적 역할을 하며 감지 결과를 바탕으로 더 이상의 노후화를 막기 위한 활동을 할 수 있다. 하지만, 현재 대부분의 균열 감지는 전문가의 판단에만 의존하기에 시설물의 면적이 큰 경우 비용과 시간이 과도하게 사용되고, 전문가의 역량에 따라 다른 판단 결과가 발생할 수 있어 신뢰성에 문제가 있었다. 본 논문에서는 이러한 한계를 극복하기 위해 기계학습 기반의 콘크리트 균열 감지 프레임워크를 제안한다. 제안된 프레임워크는 데이터 분류, 기계학습 모델 학습, 학습된 모델의 검증과 테스트를 포함하는 프레임워크로 완전 자동화된 콘크리트 균열 감지가 가능하다. 제안된 프레임워크를 통해 학습된 기계학습 모델은 콘크리트 균열 이미지와 정상 이미지를 96%의 높은 정확도로 분류할 수 있었다. 본 논문에서 제안된 프레임워크를 적용하여 기존의 전문가 중심의 시설물 유지관리보다 더욱 효과적이고 효율적인 시설물의 유지관리가 가능할 것으로 기대된다.

Real-time comprehensive image processing system for detecting concrete bridges crack

  • Lin, Weiguo;Sun, Yichao;Yang, Qiaoning;Lin, Yaru
    • Computers and Concrete
    • /
    • 제23권6호
    • /
    • pp.445-457
    • /
    • 2019
  • Cracks are an important distress of concrete bridges, and may reduce the life and safety of bridges. However, the traditional manual crack detection means highly depend on the experience of inspectors. Furthermore, it is time-consuming, expensive, and often unsafe when inaccessible position of bridge is to be assessed, such as viaduct pier. To solve this question, the real-time automatic crack detecting system with unmanned aerial vehicle (UAV) become a choice. This paper designs a new automatic detection system based on real-time comprehensive image processing for bridge crack. It has small size, light weight, low power consumption and can be carried on a small UAV for real-time data acquisition and processing. The real-time comprehensive image processing algorithm used in this detection system combines the advantage of connected domain area, shape extremum, morphology and support vector data description (SVDD). The performance and validity of the proposed algorithm and system are verified. Compared with other detection method, the proposed system can effectively detect cracks with high detection accuracy and high speed. The designed system in this paper is suitable for practical engineering applications.