• Title/Summary/Keyword: design-Based Education

Search Result 4,019, Processing Time 0.036 seconds

A Study to Design the Instructional Program based on Explainable Artificial intelligence (설명가능한 인공지능기반의 인공지능 교육 프로그램 개발)

  • Park, Dabin;Shin, Seungki
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.149-157
    • /
    • 2021
  • Ahead of the introduction of artificial intelligence education into the revised curriculum in 2022, various class cases based on artificial intelligence should be developed. In this study, we designed an artificial intelligence education program based on explainable artificial intelligence using design-based research. Artificial intelligence, which covers three areas of basic, utilization, and ethics of artificial intelligence and can be easily connected to real-life cases, is set as a key topic. In general design-based studies, more than three repetitive processes are performed, but the results of this study are based on the results of the primary design, application, and evaluation. We plan to design a program on artificial intelligence that is more complete based on the third modification and supplementation by applying it to the school later. This research will help the development of artificial intelligence education introduced at school.

  • PDF

Development of AI education program based on Design Thinking (디자인 씽킹 기반 인공지능 교육 프로그램 개발)

  • Lee, Jaeho;Lee, Seunghoon
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.31-36
    • /
    • 2021
  • In the era of the 4th industrial revolution represented by AI technology, various AI education is being conducted in the education field. However, AI education in the educational field is mostly one-off project education or teacher-centered education. In order to practice student-centered, field-oriented education, an artificial intelligence education program was developed based on design thinking. The AI education program based on design thinking will improve understanding and ability to use AI through the process of solving everyday problems with AI, and will develop the ability to create new values beyond understanding AI. It is expected that various AI education will take place in the educational field through design thinking-based artificial intelligence education programs.

  • PDF

Fashion technical design education models applying the constructivism learning theory (구성주의 학습이론을 적용한 패션 테크니컬 디자인 교육 모형)

  • Im, Min-Jung
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.21 no.1
    • /
    • pp.115-129
    • /
    • 2019
  • This study aimed to develop methods for technical design education that can be intimately connected to the industrial field. For this, technical design jobs performed in the fields of the domestic and foreign fashion industries and their required competences were examined, and educational methods based on constructivism were proposed. Korean fashion technical designers' works were identified, and then the fashion technical designer's responsibilities and qualifications were collected and analyzed from global employment sites. On the basis of the collection and analysis, hands-on staff members and education experts were interviewed about required competences for the actual business and possible suitable methods for education. The results of research showed that in the case of the US, job systems and relevant duties for technical designers were clearly defined by clothing brands, whereas in Korea, businesses were systematized around vendors, not brands, and as a result the businesses of technical package composition and specification proposals were not performed properly. This study organized the contents of technical design education into fit development and specification, the composition of technical design packages, the evaluation and approval of samples, fit schedule management and fitting, block pattern setting and pattern correction, sewing specifications appropriate for styles and materials, grading, technical terms, and production management. As for the technical design education models, the cognitive apprenticeship model, resource-based learning, the problem-based and anchored model, and the problem-based and resource-based models were proposed.

The Effect of a Creative Thinking-Based Fashion Design Creative Convergence Education Program on Creativity Improvement (창의적 사고에 기반한 패션디자인 창의융합교육 프로그램이 창의성 향상에 미치는 영향)

  • Soyung Im
    • Journal of Fashion Business
    • /
    • v.27 no.3
    • /
    • pp.150-165
    • /
    • 2023
  • The purpose of this study is to propose a fashion design creativity convergence education program based on creative thinking that can be effectively used to create a creative fashion design in the fashion education field, and to verify the suitability of this program and its effectiveness in improving creativity. To this end, a fashion design creative convergence program combining divergent thinking and convergence thinking was designed, and an experimental study was conducted among college students in the fashion design department. Creativity evaluation was conducted by evaluating students' creative ability and creativity of fashion design results. In addition, an open survey was conducted to collect learners' opinions on the suitability of the program and the convergence process of divergent and convergent thinking. As a result of this study, it was found that the fashion design creative convergence education program based on creative thinking improves the creative competency of major learners of fashion design and is the learning performance competency in the process of producing creative results. This study is meaningful as it is a basic study that proposes a fashion design education program to foster the creative competency of fashion design majors, and is expected to be used in various ways in the educational field.

A Case Study on Practical Teaching Methods for Engineering Design Education - A Practical Teaching Case of Artificial Intelligence Courses for Juniors in Computer Engineering Major - (공학설계 교육을 위한 현실적 교수학습 방법론의 적용 연구 - 컴퓨터공학과 3학년 인공지능 교과진행 사례 -)

  • Kim, Jinil
    • Journal of Engineering Education Research
    • /
    • v.21 no.6
    • /
    • pp.74-80
    • /
    • 2018
  • This paper proposes practical teaching methods for efficient progress of project-based learning in engineering design education. Engineering design courses consist of three categories; introductory, individual and capstone design courses. This study concentrates on the case of individual design courses. Individual design courses act as bridges between introductory and capstone design courses and deal with applicable projects based on theoretical frameworks. In this study, practical teaching methods are applied to Artificial Intelligence curriculum as an individual design course for Juniors in Computer Engineering Major. The results on application of practical teaching methods show relatively positive in all aspects.

Industry Joint Engineering Education Via Interdisciplinary Team-based Product Development Project (학제간 팀별 설계프로젝트 기반 산학공동 공학설계교육)

  • Jee, Haeseong
    • Journal of Engineering Education Research
    • /
    • v.16 no.3
    • /
    • pp.51-60
    • /
    • 2013
  • The paper addresses an issue of industry-joint engineering education paradigm with the purpose of setting a new standard for engineering education by development and support of competitive curriculum for the interdisciplinary team-based product development, a specialized and innovative engineering education program. In the department of MSDE (Mechanical and System Design Engineering), students are educated via three major courses for targeting engineering design, Creative Engineering Design (freshman), Design Process (Senior), and Creative Product Development (Junior). All these courses are based on personal tool exercises for design software and hardware and team-project group activities of the students with other team members. This paper will briefly discuss the main focuses of these courses and case studies of the teaching results targeting the development of telecommunication device.

A Study of Developing Graduate Student Team Project-based Learning Program in the Science and Technology Field Applying Metaverse Technology (메타버스를 활용한 이공계 대학원생 팀 프로젝트 기반 교육 프로그램 개발 사례 연구)

  • Jeon, Juhui;Kim, Marie;Kim, Bokyung;Kang, Kyuri
    • Journal of Engineering Education Research
    • /
    • v.26 no.6
    • /
    • pp.19-29
    • /
    • 2023
  • This study aims to develop and apply a metaverse-based instructional design model for the education in science and technology. It analyzed the concept and characteristics of metaverse, existing non-contact education models, and major teaching strategies systematically. Based on the prior researches, an instructional design model using metaverse is developed that presents metaverse-related teaching strategies and design principles for the before-, during-, and after-lesson phases. Then, this model was applied to a project-based learning program, conducted a perception survey on instructors and learners, and revised the metaverse instructional design model based on the results of the survey. In the Metaverse Instructional Design Model, before-lesson phase is a physical and psychological preparation stage for class participation, which includes familiarization with the Metaverse learning environment, formation of expectations for education, and self-directed pre-learning. During the lesson, to effectively deliver the lesson content, it is necessary to build confidence in the learning environment, promote learning participation, provide reference materials, perform team projects and provide feedback, digest learning content, and transfer learning content. The after-lesson phase provides strategies for ongoing interaction between learners and mentors. This study introduces a new instructional design model that utilizes metaverse and shows the potential of metaverse-based education in science and technology. It also has important implications in that it provides practical guidelines for the effective design and implementation of metaverse-based education.

Contents Development of PBL-based Integrant Design Course for Creative Design Capability -Focusing on Logic Circuit Design Textbook- (창의적 설계능력을 위한 PBL기반의 요소설계 콘텐츠 개발 - 논리회로설계 교재를 중심으로 -)

  • Lee, Jae-Min
    • Journal of Digital Contents Society
    • /
    • v.13 no.3
    • /
    • pp.413-420
    • /
    • 2012
  • In this paper, PBL-based design education(PBDE) techniques for effective engineering design education to assess the infrastructure and outcome of creative engineering education which has been recognized as an important target in accreditation system of engineering education and a case of contents development as PBDE application to the logic circuit design that is essential integrant course of IT division of universities is presented. Because integrant design is based on compositional technologies with restricted realistic constraints, design components and the application of realistic constraints are different from those of capstone design. PBL technique must be carefully considered as it is used for creative design education. We applied the developed content to real design classes for validation of its performance and effectiveness.

Capstone Design Projects based on Invention Education

  • Shim, Joon-Hwan
    • Journal of Engineering Education Research
    • /
    • v.15 no.4
    • /
    • pp.31-34
    • /
    • 2012
  • This paper deals with the introduction of capstone design projects based on invention education in Department of Electronics and Communication Engineering, Korea Maritime University. This course is referred to as Creative Engineering Design for spring semester of 4th-year undergraduates. The course focuses on creative thinking and cooperative mind to students by learning engineering design skills, realizing their idea through design project and recognizing practicality of their systems. To improve creative thinking of students, intellectual property (IP) education is very helpful. If engineering students take training program in IP, it will be very beneficial for CEOs to manage intellectual capital in many industries and to ensure competition power in their business. This study suggested that students take interest in connecting their ideas with inventions through invention education reinforcing an invention and a patent exercise. It is expected that this study may help to develop new curriculum of capstone design project including IP education in many universities.