• Title/Summary/Keyword: design project

Search Result 4,053, Processing Time 0.028 seconds

Development of Instructional Model for Activation of K-MOOC: Based on Metaverse (K-MOOC 활성화를 위한 교수법 수업모형 개발 : 메타버스를 중심으로)

  • Dongyeon Choi
    • Journal of Christian Education in Korea
    • /
    • v.74
    • /
    • pp.273-294
    • /
    • 2023
  • The purpose of this study is to use K-MOOC, which has limitations in utilization because it is centered on theory delivery, to derive tasks to activate the teaching methods of instructors, and to implement the derived tasks using the metaverse platform. to develop a prototype. According to the purpose of the study, the study was conducted as follows. First, from October 4 to November 15, 2022, a Delphi survey was conducted on 21 experts with experience of consulting, research, class development, and operation related to the K-MOOC project. Second, in order to realize the tasks in the teaching method field derived from the Delphi survey, matching with the teaching method class model elements to result of Delphi survey was applied was carried out. Finally, based on the results of expert Delphi and the elements of the class model applicable to the metaverse platform, a teaching method was developed. Through the process of the study, a total of 16 detailed items were derived for the teaching method-related tasks for the activation of K-MOOC: support strategic tasks, teaching method competency, aspect of class design, evaluation and sharing of learning outcomes. By applying the metaverse, the teaching model elements for K-MOOC revitalization were derived from four categories: self-directed repetition, individualized problem solving, practice opportunity expansion, and immediate feedback, and matched with the first 16 detailed items. A four-step teaching model was completed: course attendance (step 1), mission analysis by individual level (step 2), sharing of mission solutions (step 3), and mission evaluation and feedback (step 4). Through the results of this study, the possibility of using the metaverse as a teaching practice platform was confirmed even in terms of the introduction and development of specialized techniques.

A GIS-Based Planning Methodology to Determine the Haul Route Layout in Complex Construction Projects (GIS를 이용한 토공 운반로 탐색 방법론 - 단지공사 사례를 중심으로 -)

  • Kang, Sang Hyeok;Baek, Kyeong Geun;Baek, Hyeon Gi;Seo, Jong Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6D
    • /
    • pp.631-639
    • /
    • 2010
  • The layout of haul routes within a construction site of large complex projects needs to be carefully determined as the productivity of earthwork activity heavily depends on the efficiency of the layout and the routes are not likely to change once they are settled. This paper aims to provide a construction planner with a reliable framework to create an efficient layout of haul routes within a large complex construction site. To construct the framework, five factors affecting haul route layout and the productivity of earthwork activity are described along with the associated rules of thumb recommended by design and field experts. In addition, a methodology based on spatial analysis using raster format in GIS is proposed to further increase haul route efficiency. The proposed planning framework enables a construction planner to easily find a more reliable route layout by thoroughly considering the key factors prior to setting up an earthmoving plan.

Validity of Linear Combination Approach based on Net Damping Analysis of Cable-Damper System (케이블-댐퍼 시스템의 전체감쇠비 해석을 통한 선형조합 접근법의 유효성)

  • Kim, Hyeon Kyeom;Hwang, Jae Woong;Lee, Myeong Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.467-475
    • /
    • 2009
  • Existing studies have suggested Universal Curve only for supplemental damping by damper. Therefore net damping has been determined by means of arithmetic summation between intrinsic, aero-damping of cable and supplemental damping of damper. However linear combination approach by means of the arithmetic summation is not enough theoretical background. So validity of this approach should be verified in order to design adequate cable-damper system by engineers. This study establishes governing differential equation which can consider intrinsic, aero-damping and supplemental damping as well. And also analysis method is solved by combination of muller method and successive iteration method. Consequently, this study succeeds in verification for validity of linear combination approach. As a result of this study, linear combination approach is limitedly effective in case of low stiffness and optimum damping coefficient of damper, short distance from support to damper, lower vibration mode, low aero-damping, and normal windy environment. Whereas this study will be effective in case of opposite conditions, and existing studies or linear combination approach occur to further error. Meaning of this study presents exact solution for net damping of cable-damper system, and verifies linear combination approach by means of the analysis method. In the future, if monitoring of optimum damping coefficient of a damper against aero-damping is feasible on time, algorithm of this study will be available for control of cable and semi-active damper system such as magneto-rheological damper.

Effects of Functional Improvement of Multiaxis Flat Continuous Soil Cement Earth Retaining Wall (다축 평면 연속형 SCW 흙막이 벽체의 개선 효과)

  • Chung, Choong-Sub;Yoo, Chan Ho;Nam, Ho Seong;Choi, In Gyu;Baek, Seung Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.11
    • /
    • pp.7-22
    • /
    • 2023
  • In January 2022, a new legislation was enforced to enhance the safety of underground construction. Consequently, a comprehensive assessment of underground safety is now an integral part of the planning process, including an evaluation of its impact. Ensuring the stability of temporary retaining walls during underground excavation has become paramount, prompting a heightened focus on the assessment of underground safety. This study delves into the analysis of the Multi-axis Flat Continuous Soil Cement Wall retaining wall (MFS) construction method. This method facilitates the expansion of wall thickness in the ground and provides flexibility in selecting and spacing H-piles. Through laboratory model tests, we scrutinized the load-displacement behavior of the wall, varying the H-pile installation intervals using the MFS method. Additionally, a 3-dimensional numerical analysis was conducted to explore the influence of H-pile installation intervals and sizes on the load for different thicknesses of the MFS retaining wall. The displacement analysis yielded the calculation of the height of the arching effect acting on the wall. To further our understanding, a design method was introduced, quantitatively analyzing the results of axial force and shear force acting on the wall. This involved applying the maximum arching height, calculated by the MFS method, to the existing member force review method. The axial force and shear force, contingent on the H-pile installation interval and size applied to the MFS retaining wall, demonstrated a reduction effect ranging from 24.6% to 62.9%.

The Study for Reduction Effect of Riverbed Scour due to Shape of Vanes (베인 형태에 따른 하상세굴 저감 효과에 관한 연구)

  • Hae Min Noh;Ho Jin Lee;Sung Duk Kim
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.2
    • /
    • pp.57-63
    • /
    • 2023
  • Recently, Heavy rains and super typhoons occurred by climate change cause a lot of damage in Korea. In order to reduce such damage, various types of river maintenance projects are being promoted, but it is difficult to maintain the balance of rivers in Korea with distinct flood and dry seasons. In particular, river structures installed as a river maintenance project cause various problems such as scouring of structures and their foundations during floods and river bed changes. In order to reduce such bed scour, various vanes are installed in the bend of the river, and various bed scour reduction effects appear depending on the size, arrangement, and shape of the vanes. The vane regenerates the secondary flow in the opposite direction to the secondary flow generated by the centrifugal force, thereby reducing scour around the outer bed and promoting deposition. The theory of this study uses the governing equation applying the continuity equation that satisfies the law of conservation of mass and the momentum equation that satisfies the conservation of momentum, and measures the overall average flow velocity change rate according to design factors to investigate the effect of vanes under various conditions. Both the average and cross-sectional flow velocities decreased in both the trapezoidal vane and the square vane. In addition, vanes installed perpendicularly or inclined to the direction of river flow generate a secondary flow in the opposite direction to the secondary flow generated by centrifugal force, thereby canceling the secondary flow of centrifugal force, so the effect of the vane appears.

The Relationship between Characteristics of the University Student Crowdfunding Team and Team Performance: Focus on Functional Diversity and Shared-leadership (대학생 크라우드펀딩팀 특성이 팀성과에 미치는 영향: 기능적 배경 다양성과 공유리더십을 중심으로)

  • Lee, Sun-Hee;Lee, Sang-Youn
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.17 no.2
    • /
    • pp.99-114
    • /
    • 2022
  • Crowdfunding is one of new financing alternatives and is innovative and creative. In order to proceed with crowdfunding, various functions are required, such as design for screen composition, marketing and promotion for the public, accounting to manage the collected funds, and product production and purchase for reward. In addition, since it is a project that must be completed in a short period of time, cooperation between team members is important. This paper studied how the characteristics of the team conducting crowdfunding affect the team performance in crowdfunding. In this study, we set functional background diversity and shared leadership necessary for crowdfunding as team characteristic variables and crowdfunding amount, completion of work and team innovation as team performance variables. This study tests the hypotheses from 220 university students in 79 teams. The findings suggest that functional diversity and shared leadership are positively related to the completion of work and team innovation but not related to crowdfunding amount. To date, few studies have studied the relationship between characteristics of the crowdfunding team and performance. Therefore, the study on functional diversity and shared leadership in crowdfunding can expand existing crowdfunding study area.

Study on Weather Modification Hybrid Rocket Experimental Design and Application (기상조절용 하이브리드 로켓의 실험 설계 및 활용연구)

  • Joo Wan Cha;Bu-Yo Kim;Miloslav Belorid;Yonghun Ro;A-Reum Ko;Sun Hee Kim;Dong-Ho Park;Ji Man Park;Hae Jung Koo;Ki-Ho Chang;Hong Hee Lee;Soojong Kim
    • Atmosphere
    • /
    • v.34 no.2
    • /
    • pp.203-216
    • /
    • 2024
  • The National Institute of Meteorological Sciences in Korea has developed the Weather Modification Hybrid Rocket (WMHR), an advanced system that offers enhanced stability and cost-effectiveness over conventional solid-fuel rockets. Designed for precise operation, the WMHR enables accurate control over the ejection altitude of pyrotechnics by modulating the quantity of oxidizer, facilitating specific cloud seeding at various atmospheric layers. Furthermore, the rate of descent for pyrotechnic devices can be adjusted by modifying parachute sizes, allowing for controlled dispersion time and concentration of seeding agents. The rocket's configuration also supports adjustments in the pyrotechnic device's capacity, permitting tailored seeding agent deployment. This innovation reflects significant technical progression and collaborations with local manufacturers, in addition to efforts to secure testing sites and address hybrid rocket production challenges. Notable outcomes of this project include the creation of a national framework for weather modification technology utilizing hybrid rockets, enhanced cloud seeding methods, and the potential for broader meteorological application of hybrid rockets beyond precipitation augmentation. An illustrative case study confirmed the WMHR's operational effectiveness, although the impact on cloud seeding was limited by unfavorable weather conditions. This experience has provided valuable insights and affirmed the system's potential for varied uses, such as weather modification and deploying high-altitude meteorological sensors. Nevertheless, the expansion of civilian weather rocket experiments in Korea faces challenges due to inadequate infrastructure and regulatory limitations, underscoring the urgent need for advancements in these areas.

A Study on Policy Trends and Location Pattern Changes in Smart Green-Related Industries (스마트그린 관련 산업의 정책동향과 입지패턴 변화 연구)

  • Young Sun Lee;Sun Bae Kim
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.38-52
    • /
    • 2024
  • Digital transformation industry contributes to the improvement of productivity in overall industrial production, the smart green industry for carbon neutrality and sustainable growth is growing as a future industry. The purpose of this paper is to explore the status and role of the industry in the future industry innovation ecosystem through the analysis of the growth drivers and location pattern changes of the smart green industry. The industry is on the rise in both metropolitan and non-metropolitan areas, and the growth of the industry can be seen in non-metropolitan and non-urban areas. In particular, due to the smart green industrial complex pilot project, the creation of Gwangju Jeonnam Innovation City, and the promotion of new and renewable energy policies, the emergence of core aggregation areas (HH type) in the coastal areas of Honam and Chungcheongnam-do, and the formation of isolated centers (HL type) in the Gyeongsang region, new and renewable energy production companies are being accumulated in non-metropolitan areas. Therefore, the smart green industry is expected to promote the formation of various specialized spokes in non-urban areas in the future industrial innovation ecosystem that forms a multipolar hub-spoke network structure, where policy factors are the triggers for growth.

Monitoring Vegetation Structure Changes in Urban Wetlands (도시 내 습지의 식생구조 변화 모니터링)

  • Kim, Na-Yeong;Nam, Jong-Min;Lee, Gyeong-Yeon;Lee, Kun-Ho;Song, Young-Keun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.6
    • /
    • pp.135-154
    • /
    • 2023
  • Urban wetlands provide various ecosystem services and are subject to restoration and creation projects due to their increased value in the context of climate change. However, the vegetation structure of wetlands is sensitive to environmental changes, including artificial disturbances, and requires continuous maintenance. In this study, we conducted a vegetation survey of three wetlands created as part of a project to restore urban degraded natural ecosystems and monitored the quantitative changes in wetland vegetation structure using an unmanned aerial vehicle. The vegetation survey revealed 73 species in Incheon Yeonhui wetland, and the change in vegetation composition based on wetland occurrence frequency was 11.5% on average compared to the 2018 vegetation survey results. The vegetation survey identified 44 species in Busan Igidae wetland, and the proportion of species classified as obligate upland plants was the highest at 48.8% among all plants, while the proportion of naturalized plants accounted for 15.9% of all plants. The open water surface area decreased from 10% in May 2019 to 6.7% in May 2020. Iksan Sorasan wetland was surveyed and 44 species were confirmed, and it was found that the proportion of facultative wetland plant decreased compared to the 2018 vegetation survey results, and the open water surface area increased from 0.4% in May 2019 to 4.1% in May 2020. The results of this study showed that wetlands with low artificial management intensity exhibited a tendency for stabilization of vegetation structure, with a decrease in the proportion of plants with high wetland occurrence frequency and a relatively small number of new species. Wetlands with high artificial management intensity required specific management, as they had a large change in vegetation structure and a partially high possibility of new invasion. We reaffirmed the importance of continuous monitoring of vegetation communities and infrastructure for wetlands considering the function and use of urban wetlands, and restoration stages. These research results suggest the need to establish a sustainable wetland maintenance system through the establishment of long-term maintenance goals and monitoring methods that consider the environmental conditions and vegetation composition of wetlands.

A Study on the Determination of Optimal Location and Size for Underground Sluiceway Design (지하방수로 설계를 위한 적정 위치선정 및 규모 결정에 관한 연구)

  • Lee, Jong-Tae;Lim, Taek-Sun;Hur, Sung-Chul;Park, Sang-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.5
    • /
    • pp.137-145
    • /
    • 2008
  • In this study, to reduce the flood damage caused by flood discharge exceeding project flood, the primary technology was applied to determining the optimal location and size for underground sluiceway. The Jungrang Stream was selected for this study because the stream was overflowed and the embankment section of the stream was destroyed owing to localized torrential rainfall in 1998 and 2001. Considering 200-year frequency storm, the inlets of the underground discharge channel were located at Seoul City limits, the confluence of Danghyun Stream, Wolgye 1-gyo, and the confluence of Mukdong Stream. The outlets were located at the estuary of Jungrang Stream and rightbank of Banpo Bridge in Han River. The transverse discharge according to the variation of overflow depth at the inlet of underground discharge channel was estimated and the effect of inundation reduction was analyzed. To examine the appropriate scale of the underground discharge channel, the 8 operation methods for the management of outlet discharge were compared considering four rules (only storage, the constant discharge rate, the constant discharge volume, and the mixture of the constant discharge rate and discharge volume). As a result, the effect of inundation reduction was most significantly improved when the inlet was located at the confluence of Danghyun Stream. The appropriate size of underground sluiceway for 200-year frequency storm was studied, and as a result, the appropriate diameters of the underground discharge channel were 12 m in case of only storage(Rule D), 9m in 50% of discharge(Rule E), 8 m in constant discharge volume(Rule F), and 7 m in mixture method(Rule G). This investigation process can be applied to design the underground discharge channel when the inundation damage is significant in coastal area due to embankment overflow. The underground discharge channel in Jungrang Stream can also be used as an underground road to link Seoul City to Uijeongbu City during dry season.