• Title/Summary/Keyword: design problem

Search Result 10,745, Processing Time 0.039 seconds

Topology Optimization using an Optimality Criteria Method (최적조건법에 의한 위상 최적화 연구)

  • 김병수;서명원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.224-232
    • /
    • 1999
  • Topology optimization has evolved into a very efficient concept design tool and has been incorporated into design engineering processes in many industrial sectors. In recent years, topology optimization has become the focus of structural design community and has been researched and applied widely both in academia and industry. There are mainly tow approaches for topology optimization of continuum structures ; homogenization and density methods. The homogenization method is to compute is to compute an optimal distribution of microstructures in a given design domain. The sizes of the micro-calvities are treated as design variables for the topology optimization problem. the density method is to compute an optimal distribution of an isotropic material, where the material densities are treated as design variables. In this paper, the density method is used to formulate the topology optimization problem. This optimization problem is solved by using an optimality criteria method. Several example problems are solved to show the usefulness of the present approach.

  • PDF

Optimum design of a reinforced concrete beam using artificial bee colony algorithm

  • Ozturk, H.T.;Durmus, Ay.;Durmus, Ah.
    • Computers and Concrete
    • /
    • v.10 no.3
    • /
    • pp.295-306
    • /
    • 2012
  • Optimum cost design of a simply supported reinforced concrete beam is presented in this paper. In the formulation of the optimum design problem, the height and width of the beam, and reinforcement steel area are treated as design variables. The design constraints are implemented according to ACI 318-08 and studies in the literature. The objective function is taken as the cost of unit length of the beam consisting the cost of concrete, steel and shuttering. The solution of the design problem is obtained using the artificial bee colony algorithm which is one of the recent additions to metaheuristic techniques. The artificial bee colony algorithm is imitated the foraging behaviors of bee swarms. In application of this algorithm to the constraint problem, Deb's constraint handling method is used. Obtained results showed that the optimum value of numerical example is nearly same with the existing values in the literature.

Structure-Control Combined Design for 3-D Flexible Structure (3차원 유연구조물에 대한 구조-제어 통합설계)

  • Park Jung-Hyen
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.109-114
    • /
    • 2004
  • A combined optimal design problem of structural and control systems is discussed by taking a 3-D flexible structure as an object. We consider a minimum weight design problem for structural system and disturbance suppression problem for the control system. The conditions for the existence of controller are expressed in terms of linear matrix inequalities (LMI). By minimizing the linear sum of the normalized structural objective function and control objective function, it is possible to make optimal design by which the balance of the structural weight and the control performance is taken. We showed in this paper the validity of combined optimal design of structural and control systems.

Control Allocation and Controller Design for Marine Vessel based on H Control Approach (선박운동제어를 위한 제어력분배 및 제어기설계에 관한 연구)

  • Ji, Sang-Won;Kim, Young-Bok
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.20-25
    • /
    • 2012
  • In this paper, the authors propose a new approach to the control problem of marine vessels that are moored or controlled by actuators. The vessel control system is basically based on Dynamic Positioning System (DPS) technology. The main object of this paper is to obtain a more useful control design method for DPS. In this problem, the control allocation is a complication. For this problem, many results have been given and verified by other researchers using a two-step process, with the controller and control allocation design processes carried out individually. In this paper, the authors provide a more sophisticated design solution for this issue. The authors propose a new design method in which the controller design and control allocation problems are considered and solved simultaneously. In other words, the system stability, control performance, and allocation problem are unified by an LMI (linear matrix inequality) based on control theory. The usefulness of the proposed approach is verified by a simulation using a supply vessel model.

Interactive Control Panel Layout Using a Constraint Satisfaction Algorithm (제약만족 알고리즘을 이용한 상호대화적 조종패널 배치)

  • Park, Sung-Joon;Jeong, Eui-S.;Chang, Soo-Y.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.20 no.4
    • /
    • pp.85-97
    • /
    • 1994
  • An interactive and iterative control panel layout method based on the constraint satisfaction problem (CSP) technique was developed to generate an ergonomically sound panel design. This control panel layout method attempts to incorporate a variety of relevant ergonomic principles and design constraints, and generate an optimal or, at least, a "satisfactory" solution through an efficient search algorithm. The problem of seeking an ergonomically sound panel design should be viewed as a multi-criteria design problem and most of the design objectives should be understood as constraints. Hence, a CSP technique was employed in this study for dealing with the multi-constraints layout problem. The efficient search algorithm using "preprocess" and "look_ahead" procedures was developed to handle vast amount of computation. In order to apply the CSP technique to the panel layout procedure, the ergonomic principles such as spatial compatibility, frequency-of-use, importance, functional grouping, and sequence-of-use were formalized as CSP terms. The effectiveness of the proposed panel layout method was evaluated by example problems and the results clearly showed that the generated layouts properly considered various ergonomic design principles.

  • PDF

B-DCS Fiber-Optic Network Design Algorithm Considering Network Survivability (생존도가 보장된 B-DCS 광전송망 설계 알고리즘)

  • 이인행;이영옥;정순기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.12A
    • /
    • pp.1899-1909
    • /
    • 1999
  • Considering survivability in fiber-optic transmission networks using B-DCS(Broadband Digital Cross-connect System), a network design problem consists of WCAP(Working Channel Assignment Problem) and SCAP(Spare Channel Assignment Problem). WCAP has not been studied intensively as a part of a network design problem to minimize total network cost while SCAP has been studied in the several papers as an independent problem. In this study, we developed a WSCAP(Working and Spare Channel Assignment Problem) algorithm which is to minimize the total number of spare channels and working channels. After problem description, an IP(Integer Programming) model is formulated and several heuristic algorithms are presented. Finally, the result of a case study is described.

  • PDF

Research of the Performance Improvement of a Light Shelf Depending on the Diffusion Film Installation Position (확산필름 부착 위치에 따른 광선반 성능개선 연구)

  • Park, Eunsu;Lee, Heangwoo;Song, Seonkjae;Kim, Yongseong
    • KIEAE Journal
    • /
    • v.17 no.3
    • /
    • pp.91-97
    • /
    • 2017
  • Purpose: Various studies on a light shelf are in progress, but it has the problem of glare occurrence. The present study suggested a diffusion film as the method for resolving the glare problem, and aimed to establish light shelf-related basic data by conducting the performance evaluation of a light shelf depending on the installation position of the diffusion film. Method: To carry out the light shelf performance evaluation depending on the diffusion film installation position, three cases were established: no diffusion film installation (Case 1), diffusion film installation on the reflector (Case 2), and diffusion film installation on the upper glass surface of the window for light shelf installation (Case 3); and the energy reduction performance, luminance, and luminance contrast were analyzed based on a testbed. Result: The conclusions of this study are as follows. 1) When the diffusion film was applied, the amount of light introduced through the light shelf decreased, and the average indoor illumination decreased accordingly. 2) For Case 3, the lighting energy reduction performance was identical to the lighting energy reduction efficiency of the existing light shelf; and for Case 2, it was found to be inappropriate as the lighting energy consumption increased compared to that of the existing light shelf. 3) The analysis of the glare for the cases established in this study showed that the luminance contrast was low for Case 3, and thus the glare problem could be minimized. 4) The specific angle of the light shelf could induce the glare problem by increasing the luminance depending on the external condition. 5) Based on the aforementioned contents, the installation position of the diffusion film for improving the lighting performance and glare problem of the light shelf was found to be the upper glass surface of the window for light shelf installation.

Effect of Inadequate Design on Cost and Time Overrun of Road Construction Projects in Tanzania

  • Rwakarehe, Eradius E.;Mfinanga, David A.
    • Journal of Construction Engineering and Project Management
    • /
    • v.4 no.1
    • /
    • pp.15-28
    • /
    • 2014
  • Completing road construction projects within the budget and time has been a problem for the Tanzania National Roads Agency (TANROADS); and the major problem highlighted in almost all projects being inadequate design. However, the extent to which inadequate design contributes to both time and cost overruns and its causes remained under-studied. The objective of this study is therefore to determine the extent of the effect of inadequate design, its causes and remedial measures. The methodology used in this study includes reviewing recent projects completion reports, holding roundtable discussions with consultants and TANROADS officials and analyzing the information. Cost and time overruns for the reviewed projects averaged 44% and 26% respectively. Similarly, the extents to which inadequate design contributes to cost and time overruns were on average found to be 61% and 85% respectively. The overruns are predominantly related to problems that occurred during the design process. To alleviate the problem, TANROADS is advised to improve the management of design projects, enhance the process of reviewing design reports, improve the design process including introducing Road Safety Audit and geometric design manuals, and increase staff to match the work-load.

Design of Structure Using Orthogonal Array Considering Interactions in Discrete Design Spaces (직교배열표를 이용한 불연속 공간에서의 교호작용을 고려한 구조물 설계)

  • Hwang, Gwang-Hyeon;Gwon, U-Seong;Lee, Gwon-Hui;Park, Gyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2952-2962
    • /
    • 2000
  • The design of experiment(DOE) is getting more attention in the engineering community since it is easy to understand and apply. Recently, engineering designers are adopting DOE with orthogonal arrays when they want to design products in a discrete design space. In this research, a design flow with orthogonal arrays is defined for structural design according to the general DOE. The design problem is defined as a general structural optimization problem. Sensitivity information is evaluated by the analysis of variance(ANOVA), and an optimum design is determined from analysis of means(ANOM). Interactions between design variables are investigated to achieve additivity which should be valid in DOE. When strong interactions exit, a method is proposed. Some methods to consider the problem are suggested.

Genetic-Based Combinatorial Optimization Method for Design of Rolling Element Bearing (구름 베어링 설계를 위한 유전 알고리듬 기반 조합형 최적설계 방법)

  • 윤기찬;최동훈;박창남
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.166-171
    • /
    • 2001
  • In order to improve the efficiency of the design process and the quality of the resulting design for the application-based exclusive rolling element bearings, this study propose design methodologies by using a genetic-based combinatorial optimization. By the presence of discrete variables such as the number of rolling element (standard component) and by the engineering point of views, the design problem of the rolling element bearing can be characterized by the combinatorial optimization problem as a fully discrete optimization. A genetic algorithm is used to efficiently find a set of the optimum discrete design values from the pre-defined variable sets. To effectively deal with the design constraints and the multi-objective problem, a ranking penalty method is suggested for constructing a fitness function in the genetic-based combinatorial optimization. To evaluate the proposed design method, a robust performance analyzer of ball bearing based on quasi-static analysis is developed and the computer program is applied to some design problems, 1) maximize fatigue life, 2) maximize stiffness, 3) maximize fatigue life and stiffness, of a angular contact ball bearing. Optimum design results are demonstrate the effectiveness of the design method suggested in this study. It believed that the proposed methodologies can be effectively applied to other multi-objective discrete optimization problems.

  • PDF