• Title/Summary/Keyword: design of concrete structures

Search Result 1,965, Processing Time 0.032 seconds

Verification of diaphragm seismic design factors for precast concrete parking structures

  • Zhang, Dichuan;Fleischman, Robert
    • Structural Engineering and Mechanics
    • /
    • v.71 no.6
    • /
    • pp.643-656
    • /
    • 2019
  • A new seismic design methodology was proposed for precast concrete diaphragms. This methodology adopts seismic design factors applied on top of current diaphragm design forces. These factors are aimed to produce diaphragm design strengths aligned with different seismic performance targets. These factors were established through extensive parametric studies. These studies used a simple evaluation structure with a single-bay rectangular diaphragm. The simple evaluation structure is suitable for establishment of the design factors over comprehensive structural geometry and design parameters. However, the application of the design factors to prototype structures with realistic layouts requires further verification and investigation. This paper presents diaphragm design of several precast concrete parking structures using the new design methodology and verification of the design factor through nonlinear dynamic time history analyses. The seismic behavior and performance of the diaphragm were investigated for the precast concrete parking structures. It was found that the design factor established for the new design methodology is applicable to the realistic precast concrete parking structures.

Improving Durability Performance of Reinforced Concrete Structures with Probabilistic Analysis

  • Ferreira, Rui Miguel
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.2
    • /
    • pp.137-143
    • /
    • 2008
  • In recent years, much research work has been performed on durability design and long-term performance of concrete structures in marine environments. In particular, the development of new procedures for probability-based durability design has been shown to provide a more realistic basis for the analysis. This approach has been successfully applied to several new concrete structures, where requirements for a more controlled durability and service life have been specified. For reinforced concrete structures in a marine environment, it is commonly assumed that the dominant degradation mechanism is the corrosion of the reinforcement due to the presence of chlorides. The design approach is based on the verification of durability limit states, examples of which are: depassivation of reinforcement, cracking and spalling due to corrosion, and collapse due to cross section loss of reinforcement. With this design approach the probability of failure can be determined as a function of time. In the present paper, a probability-based durability performance analysis is used in order to demonstrate the importance of the durability design approach of concrete structures in marine environments. In addition, the sensitivity of the various durability parameters affecting and controlling the durability of concrete structures in a marine environment is studied. Results show that the potential of this approach to assist durability design decisions making process is great. Based the crucial information generated, it is possible to prolong the service life of structures while simultaneously optimizing the final design solution.

Probability-based durability design software for concrete structures subjected to chloride exposed environments

  • Shin, Kyung-Joon;Kim, Jee-Sang;Lee, Kwang-Myong
    • Computers and Concrete
    • /
    • v.8 no.5
    • /
    • pp.511-524
    • /
    • 2011
  • Although concrete is believed to be a durable material, concrete structures have been degraded by severe environmental conditions such as the effects of chloride and chemical, abrasion, and other deterioration processes. Therefore, durability evaluation has been required to ensure the long term serviceability of structures located in chloride exposed environments. Recently, probability-based durability analysis and design have proven to be reliable for the service-life predictions of concrete structures. This approach has been successfully applied to durability estimation and design of concrete structures. However, currently it is difficult to find an appropriate method engineers can use to solve these probability-based diffusion problems. In this paper, computer software has been developed to facilitate probability-based durability analysis and design. This software predict the chloride diffusion using the Monte Carlo simulation method based on Fick's second law, and provides durability analysis and design solutions. A graphic user interface (GUI) is adapted for intuitive and easy use. The developed software is very useful not only for prediction of the service life but for the durability design of the concrete structures exposed to chloride environments.

Strength of Vertical Joints in Large Concrete Panel Structures (대형 콘크리트 패널 구조의 수직접합부 내력에 관한 고찰)

  • 이용재;서수연;이원호;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.04a
    • /
    • pp.95-98
    • /
    • 1992
  • In large panel structures, the design of joints which interconnect panels, is important deciding the load-bearing capacity of structures. Being various factors in the design of joints, it is difficult to develop a the critical system for the structural analysis of large concrete panel structures. Therefore there is a tendency to depend on the experiment. The purpose of this paper is to investigate the strength and the mechanical behavior of vertical joints in large concrete panel structures.

  • PDF

The Study on the design of durability of Concrete in Agricultural Hydraulic Structures (농업용 수리구조물의 내구성 설계방안 연구)

  • Park Kwang Su;Kim Meyong Won;Kim Kwan Ho;Lee Joon Gu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.830-833
    • /
    • 2004
  • Hydraulic structures have been constructed with low cost concrete so as to increase the investment efficiency. But, it has caused to produce structures having excess internal voids inside concrete. As the construction of agricultural irrigation and drainage project is concentrated on off-farming season and scattered in wider area, variation of quality of structures is big and it caused increase of internal voids. Due to that reason, hazardous substance is passing rather freely through the voids causing occur of crack and accordingly life time of structures is getting shortened. It is necessary to make a thesis of design criteria for design strength to increase life time, range of variation of quality, strength of ready-mixed concrete proper to design strength, and water-cement ratio and air content.

  • PDF

Experimental investigation and design method of the general anchorage zone in the ring beam of prestressed concrete containment vessels

  • Chang Wu;Tao Chen;Yanli Su;Tianyun Lan;Shaoping Meng
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.485-497
    • /
    • 2024
  • Ring beam is the main anchorage zone of the tendons in the nuclear power prestressed concrete containment vessel (PCCV). Its safety is crucial and has a great influence on the overall performance of PCCV. In this paper, two half-scale ring beams were tested to investigate the mechanical performance of the anchorage zone in the PCCV under multidirectional pressure. The effect of working condition with different tension sequences was investigated. Additionally, a half axisymmetric plane model of the containment was established by the finite element simulation to further predict the experimental responses and propose the local reinforcement design in the anchorage zone of the ring beam. The results showed that the ultimate load of the specimens under both working conditions was greater than the nominal ultimate tensile force. The original reinforcement design could meet the bearing capacity requirements, but there was still room for optimization. The ring beam was generally under pressure in the anchorage area, while the splitting force appeared in the under-anchor area, and the spalling force appeared in the corner area of the tooth block, which could be targeted for local strengthening design.

Development of Durability Design System for Concrete Structures (콘크리트 구조물의 내구성 설계시스템 개발)

  • 변근주;권성준;송하원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.161-166
    • /
    • 1998
  • The concrete structures designed and constructed by conventional design concept based on structural performance consideration show sometimes serious durability problem when the structures are exposed to aggressive environment. Because present design system focuses on the structure safety and considers durability indirectly by the concrete mix design and cover depth, the durability of concrete structure cannot be ensured. As the first step to develope the durability design for concrete structure, durability index which represents internal concrete resistance and environment index which represents external environmental exposure are derived quantitatively. In the next step, the durability design system is developed by checking durability limit state with computed two indexes under service life condition by considering of the reliability of structure. Finally, the proposed system is verified with a model problem.

  • PDF

A risk-based framework for design of concrete structures against earthquake

  • Hassani, Mohammadhassan;Behnam, Behrouz;Maknoon, Reza
    • Computers and Concrete
    • /
    • v.25 no.2
    • /
    • pp.167-179
    • /
    • 2020
  • Optimal design of structures against earthquake loads is often limited to reduce initial construction costs, while the cost induced to structures during their useful life may be several times greater than the initial costs. Therefore, it is necessary to consider the indirect costs due to earthquakes in the design process. In this research, an integrated methodology for calculating life cycle cost (LCC) of moment-resisting concrete frames is presented. Increasing seismic safety of structures and reducing human casualties can play an important role in determining the optimal design. Costs incurred for structures are added to the costs of construction, including the costs of reconstruction, financial losses due to the time spent on reconstruction, interruption in building functionality, the value of people's life or disability, and content loss are a major part of the future costs. In this research, fifty years of useful life of structures from the beginning of the construction is considered as the life cycle. These costs should be considered as factors of calculating indirect costs of a structure. The results of this work represent the life cycle cost of a 4 story, 7 story, and 10 story moment-resisting concrete frame by details. This methodology is developed based on the economic conditions of Iran in 2016 and for the case of Tehran city.

Development of Durability Design for Railroad Concrete Structures Exposed to Marine Environment Considering Time Dependency (시간의존성을 고려한 해안가 철도 콘크리트 구조물에 대한 내구성 설계 기법의 개발)

  • Song, Ha-Won;Pack, Seung-Woo;Lee, Son-Ho;Kwen, Jin-Su;Lee, Hyun-Jung
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1431-1438
    • /
    • 2007
  • This paper presents a refined design model for current railroad design code on concrete structures exposed to marine environment. A time-varying diffusion coefficient(D) as well as surface chloride$(C_S)$ and chloride threshold level$(C_{lim})$ are studied. Averaging value of the D with time over exposed duration were used to refined durability design model to consider time dependent characteristic of D. The values for $C_S$ and $C_{lim}$ for the seashore in Korea revised for realistic durability design. The proposed model was verified by the so-called performance-based durability design, which is widely used in recent durability design code. Results show that the current standard specification underestimates durability performances of concrete structures exposed to marine environment, so that the cover depth design using current durability evaluation in the standard specifications is very much conservative. Thus, it is found that proposed durability design models for the railroad design code for railway concrete structures can be used effectively for service life design of concrete structures in marine environment.

  • PDF

A Review on Structural Behavior, Design, and Application of Ultra-High-Performance Fiber-Reinforced Concrete

  • Yoo, Doo-Yeol;Yoon, Young-Soo
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.2
    • /
    • pp.125-142
    • /
    • 2016
  • An overall review of the structural behaviors of ultra-high-performance fiber-reinforced concrete (UHPFRC) elements subjected to various loading conditions needs to be conducted to prevent duplicate research and to promote its practical applications. Thus, in this study, the behavior of various UHPFRC structures under different loading conditions, such as flexure, shear, torsion, and high-rate loads (impacts and blasts), were synthetically reviewed. In addition, the bond performance between UHPFRC and reinforcements, which is fundamental information for the structural performance of reinforced concrete structures, was investigated. The most widely used international recommendations for structural design with UHPFRC throughout the world (AFGC-SETRA and JSCE) were specifically introduced in terms of material models and flexural and shear design. Lastly, examples of practical applications of UHPFRC for both architectural and civil structures were examined.