• 제목/요약/키워드: design low-flow

검색결과 1,011건 처리시간 0.031초

A Minimal Power Scheduling Algorithm for Low Power Circuit Design

  • Lin, Chi-Ho
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -1
    • /
    • pp.212-215
    • /
    • 2002
  • In this paper, we present an intermediate representation CDFG(Control Data Flow Graph) and an efficient scheduling technique for low power circuit design. The proposed CDFG represents control flow, data dependency and such constraints as resource constraints and timing constraints. In the scheduling technique, the constraints are substituted by subgraphs, and then the number of subgraphs is minimized by using the inclusion and overlap relation efficiently. Also, iterative rescheduling process are performed in a minimum bound estimation, starting with the as soon as possible as scheduling result, so as to reduce the power consumption in low power design. The effectiveness of the proposed algorithm has been proven by the experiment with the benchmark examples.

  • PDF

Conceptual design of small modular reactor driven by natural circulation and study of design characteristics using CFD & RELAP5 code

  • Kim, Mun Soo;Jeong, Yong Hoon
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2743-2759
    • /
    • 2020
  • A detailed computational fluid dynamics (CFD) simulation analysis model was developed using ANSYS CFX 16.1 and analyzed to simulate the basic design and internal flow characteristics of a 180 MW small modular reactor (SMR) with a natural circulation flow system. To analyze the natural circulation phenomena without a pump for the initial flow generation inside the reactor, the flow characteristics were evaluated for each output assuming various initial powers relative to the critical condition. The eddy phenomenon and the flow imbalance phenomenon at each output were confirmed, and a flow leveling structure under the core was proposed for an optimization of the internal natural circulation flow. In the steady-state analysis, the temperature distribution and heat transfer speed at each position considering an increase in the output power of the core were calculated, and the conceptual design of the SMR had a sufficient thermal margin (31.4 K). A transient model with the output ranging from 0% to 100% was analyzed, and the obtained values were close to the Thot and Tcold temperature difference value estimated in the conceptual design of the SMR. The K-factor was calculated from the flow analysis data of the CFX model and applied to an analysis model in RELAP5/MOD3.3, the optimal analysis system code for nuclear power plants. The CFX analysis results and RELAP analysis results were evaluated in terms of the internal flow characteristics per core output. The two codes, which model the same nuclear power plant, have different flow analysis schemes but can be used complementarily. In particular, it will be useful to carry out detailed studies of the timing of the steam generator intervention when an SMR is activated. The thermal and hydraulic characteristics of the models that applied porous media to the core & steam generators and the models that embodied the entire detail shape were compared and analyzed. Although there were differences in the ability to analyze detailed flow characteristics at some low powers, it was confirmed that there was no significant difference in the thermal hydraulic characteristics' analysis of the SMR system's conceptual design.

순환골재 생산 공정상에서 공기유동을 이용한 토분에 포함된 이물질 제거장치에 관한 연구 (Study on the Air-Flow Separator of Light Particles Included in the Clod in the Production Process of Recycling Aggregates)

  • 서용권;허성규;박용기
    • 한국가시화정보학회지
    • /
    • 제4권2호
    • /
    • pp.81-87
    • /
    • 2006
  • In this paper, we present flow patterns around and performance of an air-flow separator by using the numerical analysis. With this separator, particles of different density are to be separated by using the drag force from the air flow. The low-density particles are designed to be separated by using inhalation through holes on a rotating drum. To obtain the flow informations needed for determining the proper design parameters, we have performed numerical simulations by using a commercial code, ANSYS CFX. Various parameter set was tested and it was found that depending on the design of drums there exist critical parameter set regarding the attachment of light particles on the drum, which is prerequisite for the separation of materials. We present here the possibility of using the present design in separation of particles mixed in the clod for use in recycling.

  • PDF

산화제과잉 예연소기 점화시험 (Ignition Test of an Oxidizer Rich Preburner)

  • 문일윤;문인상;유재한;전재형;이선미;홍문근;하성업;강상훈;이수용
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.869-872
    • /
    • 2011
  • 다단연소 사이클 로켓엔진용 산화제과잉 예연소기 연소성능 평가를 위해 점화시험을 수행하였다. 산화제과잉 예연소기는 혼합비 60, 20 MPa의 연소압에서 작동하도록 설계되었다. 케로신과 액체산소의 일부는 혼합헤드를 통해 연소실로 공급되어 산화제과잉 환경에서 연소되며 나머지 액체산소는 연소실 중앙에 위치한 분사구를 통해 연소실에 주입되어 기화된다. 접촉발화성 연료로 별도의 점화용 분사기 없이 전체 분사기를 통해 점화용 추진제를 공급하여 점화하는 방식을 사용하였다. 안정적 점화를 위해 각각의 추진제를 2단으로 공급하여 점화할 수 있도록 하였다. 시험결과 설계유량의 45% 이하의 저유량 점화구간에서 저주파 진동이 발생하였다. 저주파 진동을 피하기 위해 저유량 구간을 최소화하는 방식으로 설계 연소압까지 안정적 점화를 유도할 수 있었다.

  • PDF

극저비속도 영역 마이크로 횡류수차의 성능 및 내부유동 수치해석적 연구 (CFD Analysis on the Performance and Internal Flow of a Micro Cross-Flow Hydro Turbine in the Range of Very Low Specific Speed)

  • 최영도;손성우
    • 한국유체기계학회 논문집
    • /
    • 제15권6호
    • /
    • pp.25-30
    • /
    • 2012
  • Renewable energy has been interested because of fluctuation of oil price, depletion of fossil fuel resources and environmental impact. Amongst renewable energy resources, hydropower is most reliable and cost effective way. In this study, to develop a new type of micro hydro turbine which can be operated in the range of very low specific speed, a cross-flow hydro turbine with simple structure is proposed. The turbine is designed to be used at the very low specific speed range of hydropower resources, such as very high-head and considerably small-flow rate water resources. CFD analysis on the performance and internal flow characteristics of the turbine is conducted to obtain a practical data for the new design method of the turbine. Results show that optimized arrangement of guide vane angle and inner guide angle can give contribution to the turbine performance improvement.

원심압축기 임펠러의 형상 변화에 따른 저유량 영역에서 발생하는 불안정 유동 평가 (Flow Instability Assessment Occurring in Low Flow Rate Region According to the Change of a Centrifugal Compressor Impeller Shape)

  • 조성휘;김홍집;이명희
    • 한국유체기계학회 논문집
    • /
    • 제19권2호
    • /
    • pp.21-26
    • /
    • 2016
  • The objective of present study is to assess the performance of the first stage compressor in a total 3-stage 5000 HP-level turbo compressor. CFD commercial code, CFX has been used to predict three-dimensional flow characteristics inside of the impeller. Shear Stress Transport (SST) model has been used to simulate turbulent flows through Reynolds-averaged Navier-Stokes (RANS) equations. Grid dependency has been also checked to get optimal grid distribution. Numerical results have been compared with the experimental test results to elucidate performance characteristics of the present compressor. In addition, flow characteristics of the impeller only have been studied for various blade configurations. Angular offset in leading edge of the blade has been selected for the optimal blade design. Performance characteristics in region of low mass flow rate and high pressure ratio between the impeller entrance and exit have been investigated for the selection of optimal blade design. Also, flow instability such as stall phenomena has been studied and anti-stall characteristics have been checked for various blade configurations in the operational window.

수공구조물이 하천환경에 미치는 영향에 관한 연구(I) : 수리학적특성 (A Study on Effects of Hydraulic Structure on River Environment(I) : Hydraulic Characteristics)

  • 안승섭;최윤영;이수식
    • 한국환경과학회지
    • /
    • 제11권3호
    • /
    • pp.191-199
    • /
    • 2002
  • In this study, water protection reservoir is selected as the target which is located at the estuary of Taehwa river to analyze and examine the effects of hydraulic structure on river environment. This study aims at the definition of factors which cause the change of ecological environment of river due to the effects of the sediment protection reservoir, and the proposal of the direction of environmental friendly river space development through the analysis and examination of stream variation conditions and riverbed variation characteristics among many effects of hydraulic structure on river environment before and after removal of the sediment protection reservoir when design flow is yielded. Firstly, in case of removal the existing sediment protection reservoir, the hydraulic variation characteristics like depth drop due to removal of the sediment protection reservoir are thought of little because it is examined that depths drop with about 0.01m and 0.01~0.56m when low flow is yielded and design flood yielded, respectively. Nextly, as the examination result of the variation characteristics of flow velocity in case of removal the existing sediment protection reservoir, it is thought that the concern about riverbed erosion is not serious according to the analyzed result as the mean velocity of the channel section where the velocity varies in case of removal the sediment protection reservoir is about 0.07~1.36m/s when low flow is yielded, and is about 1.02~2.41m/s when design flood is yielded despite riverbed erosion is concerned as it is examined that flow velocity is getting increase as about 0.01m/s when low flow is yielded and about 0.01~0.44m/s when design flood is yielded. Lastly, from the prediction result of riverbed variation for each flow amount condition before and after removal the sediment protection reservoir, it is known that the variation range of riverbed is nearly constant when flow amount of the channel exceeds a specific limit as it is analyzed that the more flow amount, the more erosion and sediment in the channel section of down stream part of the sediment protection reservoir and the sediment protection reservoir~Samho-gyo, and the variation ranges according to flow amount between flood condition and design flood condition have little difference in the channel section of the upstream of Samho-gyo.

입구 개방형 덕트를 적용한 초저낙차 횡류수차의 성능향상 (Performance Improvement of Very Low Head Cross Flow Turbine with Inlet Open Duct)

  • 천쩐무;패트릭 마크 싱;최영도
    • 한국유체기계학회 논문집
    • /
    • 제17권4호
    • /
    • pp.30-39
    • /
    • 2014
  • The cross flow turbine is economical because of its simple structure. For remote rural region, there are needs for a more simple structure and very low head cross flow turbines. However, in this kind of locations, the water from upstream always flows into the turbine with some other materials such as sand and pebble. These materials will be damage to the runner blade and shorten the turbine lifespan. Therefore, there is a need to develop a new type of cross flow turbine for the remote rural region where there is availability of abundant resources. The new design of the cross flow turbine has an inlet open duct, without guide vane and nozzle to simplify the structure. However, the turbine with inlet open duct and very low head shows relatively low efficiency. Therefore, the purpose of this study is to optimize the shape of the turbine inlet to improve the efficiency, and investigate the internal flow of a very low head cross flow turbine. There are two steps to optimize the turbine inlet shape. Firstly, by changing the turbine open angle along with changing the turbine inlet open duct bottom line (IODBL) location to investigate the internal flow. Secondly, keeping the turbine IODBL location at the maximum efficiency achieved at the first step, and changing the turbine IODBL angle to improve the performance. The result shows that there is a 7.4% of efficiency improvement by optimizing turbine IODBL location (open angle), and there is 0.3% of efficiency improvement by optimizing the turbine IODBL angle.

파이프형 원심펌프의 성능특성에 관한 실험적 연구 (Performance Characteristic of a Pipe Type Centrifugal Pump)

  • 유현주;강신형
    • 한국유체기계학회 논문집
    • /
    • 제15권5호
    • /
    • pp.32-36
    • /
    • 2012
  • The positive displacement pump and the regenerative pump are widely used in the range of low specific speed, $n_s{\leq}100$[rpm, m3/min, m]. The positive displacement pump is not suitable for miniaturization and operation in high rotational speed. The regenerative pump has a problem with large leakage flow and low efficiency. While the centrifugal pump has advantages of high efficiency, miniaturization and high rotational speed, efficiency drops sharply with decrease in specific speed. Therefore the purpose of this study is to design a new type of centrifugal pump that has advantages of centrifugal pumps in operation in low specific speed. The name of this new type of pump was called 'Pipe type centrifugal pump', since the flow path through the impeller is simple circular pipe. Due to the simple shape of impeller, the manufacturing process is simple and cost is low. There is strong jet flow at the outlet of the impeller. This jet induces flow path loss, meridional dynamic pressure loss and mixing loss. Large disk friction makes the efficiency be limitted in the range of low specific speed. Even though the loss and the low efficiency, 'Pipe type centrifugal pump' represents stable performance, affordable pressure ratio and efficiency better than that of other low specific speed pumps.

저유량 특성을 고려한 사류 송풍기의 성능 해석 (Performance analysis of mixed-flow fans considering the low flow characteristics)

  • 오형우;김광용
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2000년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.110-115
    • /
    • 2000
  • The mean streamline analysis using the empirical loss correlations has been developed for performance prediction of industrial mixed-flow fan impellers in the present study. New simple, but effective, models for the additional Euler input work characteristic and an internal recirculation loss due to internal flow reversal under the low flowrate conditions are proposed in this paper. Comparison of overall performance predictions with six sets of test data of mixed-flow fans is accomplished to demonstrate the accuracy of the proposed models. Predicted performance curves by the present set of loss models agree fairly well with experimental data for a variety of mixed-flow fan impellers over the entire operating conditions. The prediction method presented herein can be used efficiently in the conceptual design phase of mixed-flow fan impellers.

  • PDF